Journal of comparative physiology

, Volume 130, Issue 3, pp 277–282 | Cite as

Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors

Transmission recordings in vertebrates
  • H. G. Hartwig
  • T. van Veen


Supravital recordings of spectral transmission in the brains of two species of teleosts (Anguilla anguilla, Ictalurus nebulosus), an amphibian (Rana temporaria), a reptile (Lacerta muralis), two species of birds (Passer domesticus, Columba livia), and a mammal (Phodopus sungorus) indicate that photons of longer wavelengths (700–750 nm) penetrate approximately 1,000 times more effectively into the hypothalamus than photons of shorter wavelengths (400–450 nm). The decrease in transmission from 750 to 400 nm is slightly interrupted by a plateau around 500 to 540 nm because of the transmission characteristics of hemoglobin. There is a small, ill-defined transmission minimum around 430 nm corresponding to the transmission minimum of melanin and hemoglobin (soret band). The high light sensitivity of deep diencephalic photoreceptors involved in the control of photoneuroendocrine events characteristic of some non-mammalian vertebrates suggests the occurrence of photopigment-containing receptors and nerve cells summating the input of several photoreceptors. However, in addition to photopigments, there may also exist other photosensitive compounds that mediate non-visual photoneuroendocrine responses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benoit, J.: Etude de l'action des radiations visibles sur la gonadostimulation et de leur pénétration intracranienne chez les oiseaux et les mammifères. In: La photorégulation de la reproduction chez les oiseaux et les mammifères. Benoit, J., Assenmacher, I. (eds.), pp. 122–146, Paris: Centre Natl. Rech. Sci. 1970Google Scholar
  2. Comorosan, S., Sandru, D., Alexandrescu, E.: Oscillatory behaviour of enzymic reactions: a new phenomenon. Enzymologia38, 317–328 (1969)Google Scholar
  3. Deal, W.J., Erlanger, B.F., Nachmansohn, D.: Photoregulation of biological activity by photochromic reagents. III. Photoregulation of bioelectricity by acethylcholine receptor inhibitors. Proc. Natl. Acad. Sci. USA64, 1230–1234 (1969)Google Scholar
  4. Dodt, E.: Physical factors in the correlation of electroretinogram spectral sensitivity curves with visual pigments. Am. J. Ophthalmol.46, 87–91 (1958)Google Scholar
  5. Dodt, E.: The parietal eye (pineal and parietal organs) of lower vertebrates. In: Handbook of sensory physiology, Vol VII/3B. Jung, R. (ed.), pp. 113–140. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  6. Farner, D.S. (ed.): Breeding biology of birds. Proceedings of a symposium on breeding-behavior and reproductive physiology in birds (Denver, 1972). Washington D.C.: Natl. Acad. Sci. USA 1973Google Scholar
  7. Frisch, K. von: Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch.138, 319–387 (1911)Google Scholar
  8. Ganong, W.F., Shepherd, M.D., Wall, J.R., Brunt, E.E., Clegg, M.T. van: Penetration of light into the brain of mammals. Endocrinology72, 962–963 (1963)Google Scholar
  9. Hartwig, H.-G.: Neurobiologische Studien an photoneuroendokrinen Systemen, Habilitationsschrift, Fachbereich Humanmedizin, Justus-Liebig-Universität, Gießen (1975)Google Scholar
  10. Hogben, L.T., Slome, D.: The pigmentory effectory system. VI. The dual character of endocrine co-ordination in amphibian colour change. Proc. R. Soc. (Biol.)108, 10–53 (1931)Google Scholar
  11. Hollyfield, J.G., Witkovsky, P.: Pigment retinal epithelium involvement in photoreceptor development and function. J. Exp. Zool.189, 357–377 (1974)Google Scholar
  12. Hug, D.H., Roth, D., Hunter, J.K.: Photoactivation of an enzyme and biological photoreception: an hypothesis. Physiol. Phys.3, 353–360 (1971)Google Scholar
  13. McMillan, J.P., Underwood, H.A., Elliot, J.A., Stetson, M.H., Menaker, M.: Extraretinal light perception in the sparrow. 4. Further evidence that eyes do not participate in photoperiodic photoreception. J. comp. Physiol.97, 205–214 (1975)Google Scholar
  14. Menaker, M.: Rhythmus, reproduction, and photoreception. Biol. Reprod.4, 295–308 (1971a)Google Scholar
  15. Menaker, M.: Synchronization with the photic environment via extraretinal receptors. In: Biochronometry. Menaker, M. (ed.), pp. 315–322, Washington: Natl. Acad. Sci. USA 1971bGoogle Scholar
  16. Morita, Y.: Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pflügers Arch.289, 155–167 (1966)Google Scholar
  17. Oksche, A., Hartwig, H.-G.: Photoneuroendocrine systems and the third ventricle. In: Brain-endocrine interaction. II. The ventricular system, 2nd Int. Symp., Shizuoka 1974. Knigge, K.M., et al. (eds.), pp. 40–53. Basel: Karger 1975Google Scholar
  18. Peregrin, J.: The influence of the intraocular blood content on the relative spectral sensitivity curves. Samml. Wiss. Arb. Med. Fak. Karls Univ. Hradi Král.17, 263–270 (1974)Google Scholar
  19. Sacerdote, M.: Differentiation of ectopic retinal structures in the hypothalamo-hypophysial area in the adult crested newt bearing a permanent hypothalamic lesion. Z. Anat. Entwicklungsgesch.134, 49–60 (1971)Google Scholar
  20. Schäfer, O.: Spektrale Empfindlichkeit und absolute Schwelle des Farbwechsels geblendeter Elritzen (Phoxinus phoxinus L.) Biol. Zentralbl.83, 47–66 (1964)Google Scholar
  21. Scharrer, E.: Die Lichtempfindlichkeit blinder Elritzen. (Untersuchungen über das Zwischenhirn der Fische). Z. vergl. Physiol.7, 1–38 (1928)Google Scholar
  22. Seliger, H.H., McElroy, W.D. (eds.): Light: Physical and biological action. New York, London: Academic Press 1965Google Scholar
  23. Veen, T. van, Hartwig, H.-G., Müller, K.: Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). Evidence for extraretinal and extrapineal photoreception. J. comp. Physiol.111, 209–219 (1976)Google Scholar
  24. Yokoyama, K., Oksche, A., Darden, Th.R., Farner, D.S.: The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the white-crowned sparrow,Zonotrichia leucophrys gambelii. Cell Tiss. Res.189, 441–467 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. G. Hartwig
    • 1
  • T. van Veen
    • 2
  1. 1.Zentrum für Anatomie und CytobiologieJustus Liebig-UniversitätGiessenGermany
  2. 2.Department of ZoologyUniversity of LundLundSweden

Personalised recommendations