Journal of comparative physiology

, Volume 132, Issue 3, pp 191–201 | Cite as

Directional sensitivity, invariance and variability of tectal T5 neurons in response to moving configurational stimuli in the toadBufo bufo (L.)

  • J. -P. Ewert
  • H. -W. Borchers
  • A. v. Wietersheim


  1. 1.

    Different configurational visual stimuli traversed, at constant angular velocity, the centers of the receptive fields of single tectal T5 neurons (n= 42) in various directions of thex-y coordinates. The neuronal responses were recorded extracellularly in paralyzed toadsBufo bufo (L.). All data were processed by a computer, in part on-line and off-line.

  2. 2.

    Some of the T5 neurons showed no obvious change in their discharge rate when a stimulus traversed their receptive fields in different directions. Other neurons of the T5 group exhibited directional sensitivity which could be correlated with the shape of the moving stimulus.

  3. 3.

    T5(2) neurons, as described previously, were activated strongly by a stripe moving along its axis (worm-like), but they responded weakly, if the stripe axis was oriented perpendicular to the direction of movement (antiworm-like). The selective responsiveness was found to be invariant for the stimulus movement direction.

  4. 4.

    In other types of T5 neurons the selective response to the configurational stimuli tested (worms, antiworms) was a function of the movement direction. Various subtypes with different kinds of correlation between stimulus configuration and movement direction have been identified. Some of these neurons obviously correspond to the previously recorded T5(1) neurons.

  5. 5.

    Longterm recordings from the same neuron indicated that the response property — at least in some T5(1) neurons — can change, when identical series of stimuli were repeatedly presented over a period of several hours.



Discharge Rate Angular Velocity Visual Stimulus Receptive Field Movement Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



excitatory receptive field


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bear, P.M., Sasaki, H., Ervin, F.C.: Sequential changes in receptive fields of striate neurons in dark adapted cats. Exp. Brain Res.13, 256–272 (1971)Google Scholar
  2. Beaton, R., Miller, J.M.: Single cell activity in the auditory cortex of the unanesthetized behaving monkey: correlation with stimulus controlled behavior. Brain Res.100, 543–562 (1975)Google Scholar
  3. Beck, A., Ewert, J.-P.: Prey selection by toads (Bufo bufo L.) in response to configurational stimuli moved in the visual field z-y coordinates. J. Comp. Physiol.129, 207–209 (1979)Google Scholar
  4. Brzoska, J., Schneider, H.: Modification of prey-catching behavior by learning in the common toad (Bufo bufo L., Anura Amphibia): Changes in responses to visual objects and effects of auditory stimuli. Behav. Processes3, 125–136 (1978)Google Scholar
  5. Ewert, J.-P.: Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z. Vergl. Physiol.57, 263–298 (1967)Google Scholar
  6. Ewert, J.-P.: Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z. Vergl. Physiol.61, 41–70 (1968)Google Scholar
  7. Ewert, J.-P.: Single unit response of the toad's (Bufo americanus) caudal thalamus to visual objects. Z. Vergl. Physiol.74, 81–102 (1971)Google Scholar
  8. Ewert, J.-P.: The neural basis of visually guided behavior. Sci. Am.230, 34–42 (1974)Google Scholar
  9. Ewert, J.-P.: The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: The amphibian visual system: a multidisciplinary approach. Fite, K.V. (ed.). New York, San Francisco, London: Academic Press 1976Google Scholar
  10. Ewert, J.-P.: Neuroethology. Introduction to the neurophysiological fundamentals of behavior (English edition) New York: Springer 1979Google Scholar
  11. Ewert, J.-P., Hock, F.J.: Movement-sensitive neurones in the toad's retina. Exp. Brain Res.16, 41–59 (1972)Google Scholar
  12. Ewert, J.-P., Seelen, W. von: Neurobiologie und System-Theorie eines visuellen Mustererkennungsmechanismus bei Kröten. Kybernetik14, 167–183 (1974)Google Scholar
  13. Ewert, J.-P., Wietersheim, A. von: Musterauswertung durch Tectum- und Thalamus/Praetectum-Neurone im visuellen System der Kröte (Bufo bufo L.). J. Comp. Physiol.92, 131–148 (1974a)Google Scholar
  14. Ewert, J.-P., Wietersheim, A. von: Einfluß von Thalamus/ Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellenMustern bei der KröteBufo bufo (L.). J. Comp. Physiol.92, 149–160 (1974b)Google Scholar
  15. Ewert, J.-P., Hock, F.J., Wietersheim, A. von: Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der KröteBufo bufo (L.). J. Comp. Physiol.92, 343–356 (1974)Google Scholar
  16. Ewert, J.-P., Borchers, H.-W., Wietersheim, A. von: Question of prey feature detectors in the toad'sBufo bufo (L.) visual system: a correlation analysis. J. Comp. Physiol.126, 43–47 (1978)Google Scholar
  17. Ewert, J.-P., Krug, H., Schönitz, G.: Activity of retinal R3 ganglion cells in the toadBufo bufo (L.) in response to moving configurational stimuli: Influence of the movement direction. J. Comp. Physiol.129, 211–215 (1979a)Google Scholar
  18. Ewert, J.-P., Arend, B., Becker, V., Borchers, H.-W.: Invariants in configurational prey selection byBufo bufo (L.). Brain, Behav. Evol.16, 38–51 (1979b)Google Scholar
  19. Fite, K.V., Scalia, F.: Central visual pathways in the frog. In: The amphibian visual system: a multidisciplinary approach. Fite, K.V. (ed.). New York, San Francisco, London: Academic Press 1976Google Scholar
  20. Grüsser, O.-J., Grüsser-Cornehls, U.: Die Informationsverarbeitung im visuellen System des Frosches. Kybernetik 1968, 331–360 (1968)Google Scholar
  21. Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of sensory physiology, Vol. VII/3A. Jung, R. (ed.), pp. 333–429. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  22. Grüsser, O.-J., Grüsser-Cornehls, U.: Neurophysiology of the anuran visual system. In: Frog neurobiology. Llinás, R., Precht, W. (eds.), pp. 297–385. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  23. Horn, G., Hill, M.: Modifications of receptive fields of cells in the visual cortex occurring spontaneously and associated with bodyly tilt. Nature London221, 186–188 (1969)Google Scholar
  24. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. London160, 106–154 (1962)Google Scholar
  25. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol.28, 229–289 (1965)Google Scholar
  26. Ingle, D.: Disinhibition of tectal neurons by pretectal lesions in the frog. Science180, 422–424 (1973)Google Scholar
  27. Ingle, D., Sprague, J.: Sensorimotor function of the midbrain tectum. Neurosci. Res. Program Bull.13, 169–288 (1975)Google Scholar
  28. Lorenz, K.: Das angeborene Erkennen. Natur und Volk84, 285–295 (1954)Google Scholar
  29. Manley, J.A., Müller-Preuß, P.: Response variability of auditory cortex cells in the Squirrel Monkey to constant acoustic stimuli. Exp. Brain Res.32, 171–180 (1978)Google Scholar
  30. Newman, J.D., Symmes, D.: Arousal effects on unit responsiveness to vocalizations in squirrel monkey auditory cortex. Brain Res.78, 125–138 (1974)Google Scholar
  31. Noda, H., Adey, W.R.: Changes in the neuronal activity in association cortex of the cat in relation to sleep and wakefulness. Brain Res.19, 263–275 (1970)Google Scholar
  32. Poggio, G.F.: Spatial properties of neurons in striate cortex of unanesthetized macaque monkey. Invest. Ophthalmol. Visual Sci.11, 368–377 (1972)Google Scholar
  33. Schleidt, W.: Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Z. Tierpsychol.19, 697–722 (1962)Google Scholar
  34. Spinelli, D.N., Barrett, T.W.: Visual receptive field organization of single units in the cat's cortex. Exp. Neurol.24, 76–98 (1969)Google Scholar
  35. Sprague, J.M., Marchiafava, P.L., Rizzolatti, G.: Unit response to visual stimuli in the superior colliculus of the unanesthetized mid-pontine cat. Arch. Ital. Biol.106, 169–193 (1968)Google Scholar
  36. Sterling, P., Wickelgreen, B.G.: Function of the projection from the visual cortex to the superior colliculus. Brain, Behav. Evol.3, 210–218 (1970)Google Scholar
  37. Stevens, R.J.: A cholinergic inhibitory system in the frog optic tectum: its role in visual electrical responses and feeding behavior. Brain Res.49, 309–321 (1973)Google Scholar
  38. Takashi, N., Fujiwara, M.: A neural model for the development of direction selectivity in the visual cortex. Biol. Cybernetics32, 1–8 (1979)Google Scholar
  39. Tomko, G.J., Crapper, D.R.: Neuronal variability: non-stationary responses to identical visual stimuli. Brain Res.79, 405–418 (1974)Google Scholar
  40. Trachtenberg, M.C., Ingle, D.: Thalamus-tectal projections in the frog. Brain Res.79, 419–430 (1974)Google Scholar
  41. Wietersheim, A.v., Ewert, J.-P.: Neurons of the toad's (Bufo bufo L.) visual system sensitive to moving configurational stimuli: a statistical analysis. J. Comp. Physiol.126, 35–42 (1978)Google Scholar
  42. Wilczynski, W., Northcutt, R.G.: Afferents to the optic tectum of the leopard frog: an HRP study. J. Comp. Neurol.173, 219–229 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. -P. Ewert
    • 1
  • H. -W. Borchers
    • 1
  • A. v. Wietersheim
    • 1
  1. 1.Neuroethology and Biocybernetic LaboratoriesUniversity of KasselKasselFederal Republic of Germany

Personalised recommendations