Journal of comparative physiology

, Volume 121, Issue 1, pp 1–13 | Cite as

Auditory interneurons in the cricketTeleogryllus oceanicus: Physiological and anatomical properties

  • George B. Casaday
  • Ronald R. Hoy
Article

Summary

  1. 1.

    The morphology and physiology of two acoustic interneurons in the prothoracic ganglion have been studied by the use of extracellular microelectrodes filled with cobalt chloride.

     
  2. 2.

    Interneuron 1 is inhibited by 5 kHz tones (Fig. 1) and does not reliably code the temporal pattern of the calling song (Fig. 2). It is unique in each half of the prothoracic ganglion, sends dendrites unilaterally into the acoustic neuropile, and sends its axon to the brain (Figs. 3, 4).

     
  3. 3.

    Interneuron 2 is excited tonically by 5 kHz tones (Figs. 5, 6) and accurately codes the temporal structure of song (Fig. 7). One pair of these neurons is present in the prothoracic ganglion. Each interneuron 2 projects to both left and right acoustic neuropiles, but has no process leaving the ganglion (Figs. 8, 9); it is an intra-ganglionic interneuron.

     
  4. 4.

    The reliability of the relatively new extracellular cobalt staining procedure is discussed.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley, D.: Intracellular activity in cricket neurons during generation of song patterns. Z. vergl. Physiol.62, 267–283 (1969)Google Scholar
  2. Bentley, D., Hoy, R.R.: The neurobiology of cricket song. Scient. Amer. 34–44 (August 1974)Google Scholar
  3. Fentress, J.C.: Simpler networks and behavior. Sunderland, Mass.: Sinauer Assoc. Pub. 1976Google Scholar
  4. Gregory, G.E.: Neuroanatomy of the mesothoracic ganglion of the cockroachPeriplaneta americana (L.). I. The roots of the peripheral nerves. Phil. Trans. roy. Soc. B267, 421–465 (1974)Google Scholar
  5. Hill, K.G.: Carrier frequency as a factor in phonotactic behavior of female crickets (Teleogryllus commodus). J. comp. Physiol.93, 7–18 (1974)Google Scholar
  6. Hill, K.G., Boyan, G.S.: Directional hearing in crickets. Nature262, 390–391 (1976)Google Scholar
  7. Hoy, R.R.: Genetic control of acoustic behavior in crickets. Amer. Zool.14, 1067–1080 (1974)Google Scholar
  8. Hoy, R.R., Casaday, G.: Physiological and anatomical properties of cricket interneurons. Neurosc. Abstr.2, part 1, 347 (1976)Google Scholar
  9. Huber, F.: Sensory and neuronal mechanisms underlying acoustic communication in orthopteran insects. In: Sensory physiology and behavior, (ed. R. Galun, P. Hillman, I. Parnas, R. Werman). New York: Plenum Publ. 1975Google Scholar
  10. Kater, S.B., Nicholson, C.: Intracellular staining in neurobiology. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  11. Katsuki, Y., Suga, N.: Neural mechanisms of hearing in insects. J. exp. Biol.37, 279–290 (1960)Google Scholar
  12. Kutsch, W., Huber, F.: Zentrale versus periphere Kontrolle des Gesanges von Grillen (Gryllus campestris). Z. vergl. Physiol.67, 140–159 (1970)Google Scholar
  13. Leroy, Y.: Transmission du paramètre fréquence dans le signal acoustique des hybrides F1 et Px F1 de deux Grillons:Teleogryllus oceanicus etT. commodus. C.R. Acad. Sci.259, 892–895 (1964)Google Scholar
  14. Loftus-Hill, J.J., Littlejohn, M.J., Hill, K.G.: Auditory sensitivity of the cricketsTeleogryllus commodus andT. oceanicus. Nature New Biol.233, 184–185 (1971)Google Scholar
  15. Michelsen, A., Nocke, H.: Biophysical aspects of sound communication in insects. Advanc. Insect Physiol.10, 247–296 (1974)Google Scholar
  16. Murphy, R.K., Zaretsky, M.D.: Orientation to calling song by female crickets,Scapsipedus marginatus (Gryllidae). J. exp. Biol.56, 335–352 (1972)Google Scholar
  17. Paton, J.: Frequency analysis in the auditory system of field crickets. Ph.D. thesis, Cornell University, Ithaca, New York 1975Google Scholar
  18. Popov, A.V.: Frequency selectivity of the response of auditory neurons of first thoracic ganglion of the cricketGryllus bimaculatus. J. Evol. Biochem. Physiol.9, 265–267 (1973)Google Scholar
  19. Popov, A.V., Shuvalov, V.F.: Time-characteristics of communicative sounds and their analysis in the auditory system of insects. Acustica31, 315–319 (1974)Google Scholar
  20. Rehbein, H.: Experimentell-anatomische Untersuchungen über den Verlauf der Tympanalnervenfasern im Bauchmark von Feldheuschrecken, Laubheuschrecken und Grillen. Verh. Dtsch. Zool. Ges.66, 184–189 (1973)Google Scholar
  21. Rehbein, H., Kalmring, K., Römer, H.: Structure and function of acoustic neurons in the thoracic ventral nerve cord ofLocusta migratoria (Acrididae). J. comp. Physiol.95, 263–280 (1974)Google Scholar
  22. Rheinlaender, J.: Transmission of acoustic information at three levels in the auditory system ofDecticus venucivorus (Tettigoniidae, Orthoptera). J. comp. Physiol.97, 1–53 (1975)Google Scholar
  23. Rheinlaender, J., Kalmring, K.: Die afferente Höhrbahn im Bereich des Zentralnervensystems vonDecticus verrucivorus (Tettigoniidae). J. comp. Physiol.85, 361–410 (1973)Google Scholar
  24. Rheinlaender, J., Kalmring, K., Popov, A.V., Rehbein, H.: Brain projections and informations processing of biologically significant sounds by two large ventral-cord neurons ofGryllus bimaculatus DeGreer (Orthoptera, Gryllidae). J. comp. Physiol.110, 251–269 (1976)Google Scholar
  25. Stout, J.F., Huber, F.: Responses of central auditory neurons of female crickets (Gryllus campestris L.) to the calling song of the male. Z. vergl. Physiol.76, 302–313 (1972)Google Scholar
  26. Tyrer, N.M., Bell, E.M.: The intensification of cobalt-filled neuron profiles using a modification of Timm's sulphide-silver method. Brain Res.73, 151–155 (1974)Google Scholar
  27. Walker, T.: Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann. ent. Soc. Amer.50, 626–636 (1957)Google Scholar
  28. Zaretsky, M.: Patterned response to song in cricket central auditory neurone. Nature229, 195–196 (1971)Google Scholar
  29. Zaretsky, M.: Specificity of the calling song and short term changes in the phonotactic response by female cricketsScapsipedus marginatus (Gryllidae). J. comp. Physiol.79, 153–172 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • George B. Casaday
    • 1
  • Ronald R. Hoy
    • 1
  1. 1.Section of Neurobiology and Behavior, Langmuir LaboratoryCornell UniversityIthacaUSA

Personalised recommendations