Journal of Comparative Physiology A

, Volume 156, Issue 4, pp 433–445 | Cite as

Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs

  • T. Finkenstädt
  • N. T. Adler
  • T. O. Allen
  • S. O. E. Ebbesson
  • J. -P. Ewert


The (14C)2DG autoradiographic technique has been employed to quantitatively map glucose utilization in the mesencephalon, the diencephalon and the cerebellum, of toads in response to configurational moving visual stimuli: (i) a 0.4 cm × 2.8 cm worm-like stripe (W) which elicited prey catching responses, (ii) a 8.4 cm × 8.4 cm square (S) that released predator avoidance responses, and (iii) a 2.8 cm × 0.4 cm antiworm-like stripe (A) which elicited no motor activity.

For various brain nuclei different relationships were obtained: The optic tectum showed statistical significant higher 2DG uptake during worm-stimulation (¯XW) than during antiworm stimulation (¯XA), i.e.¯XW>¯XA. The latter visual pattern led to a 2DG utilization that was statistically significant stronger than during stimulation with a square (¯XS), i.e.¯XA>¯XS. Thus, in comparison between right and left hemisphere as well as between brains the following ratios were obtained:

Optic tectum:¯XW>¯XA>¯XS; nucleus isthmi:¯XW>¯XA-¯Xs; posterodorsal lateral thalamic nucleus:¯XS>¯XA>¯XW; posteroventral lateral thalamic nucleus:¯XS>¯XA¯XW; posterior thalamic nucleus:¯XW>¯XA¯XS; anteripr division of the lateral thalamic nucleus:¯XW>¯XA¯XS; anterior thalamic nucleus:¯XA>¯XS>¯XW; nucleus of Bellonci and dorsal division of the ventrolateral thalamic nucleus:¯XW¯XA¯XS; cerebellum:¯XS¯XW>¯XA.


Avoidance Response Thalamic Nucleus Predator Avoidance Optic Tectum Brain Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



anterior thalamic nucleus






nucleus isthmi

cl. Ist

contralateral Ist


lateral thalamic nucleus, anterior division


lateral thalamic nucleus, posterodorsal division


lateral thalamic nucleus, posteroventral division


medial pallium


nucleus of Bellonci and ventrolateral thalamic nucleus, dorsal division


posterior thalamic nucleus


preoptic area


snapping evoking area=ventrolateral tectum




tectum opticum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ewert J-P (1971) Single unit responses of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102Google Scholar
  2. Ewert J-P (1984) Tectal functions that underlie prey-catching and predator avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  3. Ewert J-P (1985) Concepts in vertebrate neuroethology. Tinbergen Lecture. Anim Behav 33:1–29Google Scholar
  4. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475Google Scholar
  5. Ewert J-P, Finkenstädt Th, Weerasuriya A (1984) Concepts for neuronal correlates of Gestalt perception: Visual prey recognition in toads. In: Aoki K, Morita H, Ishii S (eds) Animal behavior — physiological and ethological approaches. Japan Scientific Societies Press, Tokyo, pp 137–159Google Scholar
  6. Finkenstädt Th, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study inSalamandra salamandra. J Comp Physiol 153:99–110Google Scholar
  7. Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. Neurosci Biobehav Rev 6:409–422Google Scholar
  8. Gaze RM, Jacobson M (1963) A study of the retinal tectal projection during generation of the optic nerve in the frog. Proc R Soc Lond 157:420–448Google Scholar
  9. Gorlick DL, Constantine-Paton M, Kelley DB (1984) A14C-2-deoxyglucose autoradiographic investigation of sensory inputs to the optic tectum ofRana pipiens. J Comp Physiol A 154:617–624Google Scholar
  10. Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frogRana pipiens. Brain Res 192:313–325Google Scholar
  11. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
  12. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 177–226Google Scholar
  13. Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57Google Scholar
  14. Kicliter E (1979) Some telencephalic connections in the frogRana pipiens. J Comp Neurol 185:75–86Google Scholar
  15. Kicliter E, Ebbesson SOE (1976) Organization of the ‘nonolfactory’ telencephalon. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 956–972Google Scholar
  16. Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung 20:171–183Google Scholar
  17. Neary TJ (1976) An autoradiographic study of the retinal projections in some members of ‘archaic’ and ‘advanced’ anuran families. Anat Rec 184:487Google Scholar
  18. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213:262–278Google Scholar
  19. Neary TJ, Wilczynski W (1979) Anterior and posterior thalamic afferents in the bullfrog,Rana catesbeiana. Soc Neurosci Abstr 5:144Google Scholar
  20. Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6:629Google Scholar
  21. Potter HD (1969) Structural characteristics of cell and fiber populations in the optic tectum of the frog (Rana catesbeiana). J Comp Neurol 136:203–232Google Scholar
  22. Ryan AF, Sharp FR (1982) Localization of (3H)2-deoxyglucose at the cellular level using freeze-dried tissue and dry-looped emulsion. Brain Res 252:177–180Google Scholar
  23. Satou M, Ewert J-P (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71:52–53Google Scholar
  24. Scalia F (1976a) The optic pathway of the frog: Nuclear organization and connections. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 386–406Google Scholar
  25. Scalia F (1976b) Structure of the olfactory and accessory olfactory systems. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 213–233Google Scholar
  26. Schappmann A, Stryker MP (1980) Relationship between discharge frequency and glucose utilization in visual cortex of cat and kitten. Soc Neurosci Abstr. 6:314Google Scholar
  27. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916Google Scholar
  28. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 407–434Google Scholar
  29. Trachtenberg MC, Ingle DJ (1974) Thalamo-tectal projections in the frog. Brain Res 79:419–430Google Scholar
  30. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434Google Scholar
  31. Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog,Rana catesbeiana. J Comp Neurol 198:421–433Google Scholar
  32. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: An HRP study. J Comp Neurol 173:219–229Google Scholar
  33. Wilczynski W, Northcutt RG (1979) Striatal efferents in the bullfrog,Rana catesbeiana. Soc Neurosci Abstr 5:147Google Scholar
  34. Young WG, Deutsch JA (1980) Effects of blood glucose levels on (14C) deoxyglucose uptake in rat brain tissue. Neurosci Lett 20:89–93Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • T. Finkenstädt
    • 1
  • N. T. Adler
    • 2
  • T. O. Allen
    • 2
  • S. O. E. Ebbesson
    • 3
  • J. -P. Ewert
    • 1
  1. 1.Neuroethology and Biocybernetics LaboratoriesUniversity of KasselKasselGermany
  2. 2.Psychology DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Medical CenterLouisiana State UniversityShreveportUSA

Personalised recommendations