Journal of comparative physiology

, Volume 140, Issue 1, pp 59–68 | Cite as

Geometrical optics of theNotonecta eye: Adaptations to optical environment and way of life

  • Rudolf Schwind


  1. 1.

    Certain features of the optical geometry of theNotonecta dioptric apparatus were studied. The cornea consists of two homogeneous layers; in the distal layer the refractive index is high, and in the proximal layer it is low. The two are separated by a bell-shaped transition region. This aspherical zone has almost exactly the shape one would anticipate in a system corrected for spherical aberration (Fig. 10). The outer surfaces of the individual corneal lenses are only slightly convex; therefore there is little change in the position of the plane of focus in the eye when the animal leaves the water.

  2. 2.

    The ommatidia, perpendicular to the corneal surface in the central region, lie at progressively greater angles at positions further medial and lateral (Fig. 3); for this reason the whole compound eye has a broad visual field (Fig. 11) despite its slight curvature.

  3. 3.

    75% of the optical axes of all the ommatidia are in the binocular visual space.

  4. 4.

    Observation of the displacement of the pseudopupil during rotation of the animal about a transverse axis reveals two zones of high acuity (Fig. 5). An animal resting below the water surface looks horizontally through the water with one of these zones. The other high-acuity zone is very small and lies 43 °±3 ° further ventral, so that it aims at the water surface just beyond the edge of the totally reflecting zone. With these ommatidia the animal can see the space just above the water surface.

  5. 5.

    In the ventral part of the eye the lattice of the optical axes is arranged in such a way that the vertical extent of a small object is always imaged in the same number of ommatidia regardless of distance, when the object is in the range 4.5 to 1.5 cm and 1 to 0 cm in front of the animal in the plane of the water surface. The range 1.5 to 1 cm is viewed by the high-acuity zone with which the animal scans the surface.

  6. 6.

    The extent to which the properties of movement-sensitive interneurons (Schwind, 1978) are based on the measured gradients in the optical lattice is discussed.



Optical Axis Optical Lattice Geometrical Optic Visual Space Spherical Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedau, K.: Das Facettenauge der Wasserwanzen. Z. Wiss. Zool.97, 417–456 (1911)Google Scholar
  2. Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Organization and visual axes of compound eye of the flyMusca domestica L. and behavioural consequences. J. Comp. Physiol.102, 305–320 (1975)Google Scholar
  3. Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Retinal lattice, visual field and binocularities in flies. J. Comp. Physiol.119, 207–220 (1977)Google Scholar
  4. Born, M., Wolf, E.: Principles of Optics. 3. edn. London, New York: Pergamon Press 1965Google Scholar
  5. Burkhardt, D., Darnhofer-Demar, B., Fischer, K.: Zum binokularen Entfernungssehen der Insekten. I. Die Struktur des Sehraumes von Synsekten. J. Comp. Physiol.87, 165–188 (1973)Google Scholar
  6. Burkhardt, D., Motte, I. de la, Seitz, G.: Physiological optics of the compound eye of the blowfly. In: The functional organization of the compound eye. Bernhard C.G. (ed.), pp. 51–62. Oxford: Pergamon Press 1966Google Scholar
  7. Clarkson, E.N.K., Levi-Setti, R.: Trilobite eyes and the optics of DesCartes and Huygens. Nature254, 663–667 (1975)Google Scholar
  8. Del Portillo, J.: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. Vergl. Physiol.23, 100–145 (1936)Google Scholar
  9. Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig, Wien: Deuticke 1891Google Scholar
  10. Frantsevich, L., Pichka, V.E.: Dimensions of the binocular zone of the visual field of insects (in Russian). Zh. Evol. Biokhim. Fiziol.12, 461–465 (1976)Google Scholar
  11. Friedrichs, H.F.: Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindeliden (Col.) Z. Morphol. Ökol. Tiere21, 1–172 (1931)Google Scholar
  12. Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insekten und Crustaceen. Göttingen: Vandenhoeck und Ruprecht 1879Google Scholar
  13. Horridge, G.A.: The separation of visual axes in apposition compound eyes. Philos. Trans. R. Soc. (London), Biol.285, 1–59 (1978)Google Scholar
  14. Ioannides, A.C., Horridge, G.A.: The organization of visual fields in the hemipteran acone eye. Proc. R. Soc. (London), Biol.190, 373–391 (1975)Google Scholar
  15. Kirschfeld, K., Reichardt, W.: Die Verarbeitung stationärer optischer Nachrichten im Komplexauge vonLimulus (Ommatidien-Sehfeld und räumliche Verteilung der Inhibition). Kybernetik2, 43–61 (1964)Google Scholar
  16. Lüdtke, H.: Die Funktion waagrecht liegender Augenteile des Rückenschwimmers und ihr ganzheitliches Verhalten nach Teil-lackierung. Z. Vergl. Physiol.22, 67–118 (1935)Google Scholar
  17. Lüdtke, H.: Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca L.). Z. Vergl. Physiol.35, 129–152 (1953)Google Scholar
  18. Meyer, H.W.: Differenzierte Orientierungsleistung und räumliche Organisation des Insektenauges. Fortschr. Zool.21, 294–306 (1972/73)Google Scholar
  19. Schwind, R.: Visual system ofNotonecta glauca: A neuron sensitive to movement in the binocular visual field. J. Comp. Physiol.123, 315–328 (1978)Google Scholar
  20. Scitz, G.: Der Strahlengang im Appositionsauge vonCalliphora erythrocephala (Meig.). Z. Vergl. Physiol.59, 205–231 (1968)Google Scholar
  21. Snyder, A.W.: Acuity of compound eyes: Physical limitations and design. J. Comp. Physiol.116, 161–207 (1977)Google Scholar
  22. Stavenga, D.G.: Pseudopupils of compound eyes. In: Handbook of Sensory Physiology, Vol. VII/6A. Comparative physiology and evolution of vision in invertebrates. Autrum, H. (ed.), pp. 357–440. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  23. Vogt, K.: Optische Untersuchungen an der Cornea der MehlmotteEphestia kühniella. J. Comp. Physiol.88, 201–216 (1974)Google Scholar
  24. Wohlburg-Buchholz, K.: The organization of the lamina ganglionaris of the hemipteran insects,Notonecta glauca, Corixa punctata andGerris lacustris. Cell Tissue Res.197, 39–59 (1979)Google Scholar
  25. Zänkert, A.: Vergleichend-morphologische und physiologisch-funktionelle Untersuchungen an Augen beutefangender Insekten. Sitzungsber. Ges. Naturforsch. Freunde Berlin1–3, 82–169 (1939)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Rudolf Schwind
    • 1
  1. 1.Institut für Zoologie der Universität RegensburgRegensburgGermany

Personalised recommendations