Journal of Comparative Physiology A

, Volume 160, Issue 1, pp 11–21 | Cite as

Visual adaptation in nocturnal and diurnal ants

  • Ursula Menzi


  1. 1.

    The compound eyes of three species ofCamponotus ants, one exclusively nocturnal (Camponotus irritans), one crepuscular and nocturnal (Camponotus ligniperda), and the third diurnal (Camponotus detritus) are compared with respect to day/night light sensitivity changes. AsCamponotus detritus sometimes stays outside the nest during the night, the strictly diurnal speciesCataglyphis bicolor is included in the comparison. Even though all four species are of about the same body size, the eyes of the diurnal species are much larger, contain more ommatidia and exhibit smaller cross-sectional areas of the cone tips than those of the nocturnal species.

  2. 2.

    During the natural light/dark cycle distinct ultrastructural changes occur in the distal parts of the ommatidia in all three species ofCamponotus, whereas inCataglyphis the ommatidial structures remain unchanged throughout day and night. In the eyes of theCamponotus species the most characteristic feature of the light-adapted ommatidium is the elongated proximal part of the crystalline cone, the narrow cone tract. In addition the length of the rhabdom is shorter (by about 10 μm) than in the dark-adapted state. At night the conical cone tapers steadily from its distal end at the corneal lens to the tip of the rhabdom. These dynamic responses represent the first description of retinomotoric changes within a eucone dioptric apparatus of insect apposition eyes.

  3. 3.

    The ommatidial dynamics occurring inCamponotus eyes take the following daily course: At dawn and dusk the retinomotoric changes require almost 2 h of the natural daily light cycle. As demonstrated by artificial light regimes they are based on an endogenous circadian rhythm.

  4. 4.

    Results obtained from electrophysiological (ERG) recordings are in accord with the anatomical findings. InCataglyphis bicolor the ERG-responses do not show any daily sensitivity changes, whereasCamponotus ligniperda exhibits a distinct circadian modulation of compound eye sensitivity. Between the light- and dark-adapted state sensitivity varies by about 1 log unit.



Sensitivity Change Nocturnal Species Conical Cone Diurnal Species Crystalline Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow RB, Bolanowski SJ, Brachman ML (1977) Efferent optic nerve fibers mediate circadian rhythms in theLimulus eye. Science 197:86–89Google Scholar
  2. Battelle B-A, Evans JA, Chamberlain SC (1982) Efferent fibers toLimulus eye synthesize and release octopamine. Science 216:1250–1252Google Scholar
  3. Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum, New York London, pp 217–245Google Scholar
  4. Curtis BA (1985) Temperature tolerances in the Namib desert dune ant,Camponotus detritus. J Insect Physiol 31:463–466Google Scholar
  5. Eckert M (1968) Hell-Dunkel Adaptation in aconen Appositionsaugen. Zool Jb Physiol 74:102–120Google Scholar
  6. Fein A, Charlton JS (1977) A quantitative comparison of the effects of the photoresponse ofLimulus ventral photoreceptors. J Gen Physiol 70:591–600Google Scholar
  7. Fleissner G (1974) Circadiane Adaptation und Schirmpigment-verlagerung in den Sehzellen der Medianaugen vonAndroctonus australis L. (Buthidae, Scorpiones). J Comp Physiol 91:399–416Google Scholar
  8. Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the eyes of the scorpion. Comp Biochem Physiol A 61:69–71Google Scholar
  9. Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insekten und Crustaceen. Vandenhoeck & Ruprecht, GöttingenGoogle Scholar
  10. Herrling PL (1975) Topographische Untersuchungen zur funktionellen Anatomie der Retina vonCataglyphis bicolor (Formicidae, Hymenoptera). Dissertation, Universität ZürichGoogle Scholar
  11. Home EM (1975) Ultrastructural studies of development and light-dark adaptation of the eye ofCoccinella septempunctata L., with particular reference to ciliary structures. Tissue Cell 7:703–722Google Scholar
  12. Horridge GA (1969) Unit studies on the retina of dragonflies. Z Vergl Physiol 62:1–37Google Scholar
  13. Horridge GA, Giddings C (1971) The retina ofEphestia (Lepidoptera). Proc R Soc Lond B 179:87–95Google Scholar
  14. Horridge GA, Marcelja FRS L, Jahnke R, McIntyre P (1983) Daily changes in the compound eye of a beetle (Macrogyrus). Proc R Soc Lond B 217:265–285Google Scholar
  15. Hurley AC, Lange GD, Hartline PH (1978) The adjustible ‘pinehole camera’ eyeof Nautilus. J Exp Zool 205:37–44Google Scholar
  16. Jahn T, Wulff VJ (1943) Electrical aspects of a diurnal rhythm in the eye ofDytiscus fasciventris. Physiol Zool 16:101–109Google Scholar
  17. Kass L, Barlow RB (1980) Octopamine increases the ERG ofLimulus lateral eye. Biol Bull 159:487Google Scholar
  18. Kass L, Barlow RB (1984) Efferent neurotransmission of the circadian rhythms inLimulus lateral eye. J Neurosci 4:908–917Google Scholar
  19. Kirschfeld F, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges vonMusca. Kybernetik 6:13–22Google Scholar
  20. Kleinholz LH (1966) Hormonal regulation of migration in crustaceans. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon, Oxford, pp 89–101Google Scholar
  21. Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6A). Springer, Berlin Heidelberg New York, pp 441–502Google Scholar
  22. Laughlin BS (1981) Neuronal principles in the visual system. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B). Springer, Berlin Heidelberg New York, pp 133–280Google Scholar
  23. Lüdtke H (1953) Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca). Z Vergl Physiol 35:129–152Google Scholar
  24. Meyer-Rochow VB (1972) The eyes ofCreophilus erythrocephalus F. andSartallus signatus Sharp (Staphylinidae: Coleoptera). Z Zellforsch 133:59–86Google Scholar
  25. Miller WH (1979) Intraocular filters. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology vol VII/ 6A). Springer, Berlin Heidelberg New York, pp 69–143Google Scholar
  26. Muller LL, Jacks TJ (1975) Rapid chemical dehydration of samples for electron microscopic examination. J Histochem Cytochem 23:107–110Google Scholar
  27. RCA (1968) Electro-optics handbook. RCA. Harrison, New JerseyGoogle Scholar
  28. Sato S, Kato M, Toriumi M (1957) Structural changes of the compound eye ofCulex pipiens var.pallens Coquillett in the process to dark adaptation. Sci Rep Tohoku Univ (IV) 23:91–100Google Scholar
  29. Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology vol VII/6 A). Springer, Berlin Heidelberg New York, pp 225–313Google Scholar
  30. Sotavalta O, Tuurala O, Oura A (1962) On the structure and photomechanical reactions of the compound eyes of craneflies (Tipulidae; Limnobiidae). Ann Acad Sci Fen Ser A 62:1–14Google Scholar
  31. Stieve H, Bruns M, Gaube H (1977) Ability to light-induced conductance change of arthropod visual cell membrane, indirectly depending on membrane potential, during depolarisation by external potassium or ouabain. Z Naturforsch 32c:855–869Google Scholar
  32. Swihart SL (1963) The electroretinogram ofHeliconius erato (Leptidoptera). Zoologica 48:155–166Google Scholar
  33. Varela FG, Wiitanen W (1970) The optics of the compound eye of the honeybee (Apis mellifera). J Gen Physiol 55:336–358Google Scholar
  34. Ventura DF, Martinoya C, Bloch S, Puglia NM (1976) Visual sensitivity and the state of adaptation in the antAtta sexdens (Hymenoptera; Formicoidea). J Comp Physiol 110:333–342Google Scholar
  35. Wada S, Schneider G (1967) Eine Pupillenreaktion im Ommatidium vonTenebrio molitor. Naturwissenschaften 54:542Google Scholar
  36. Wada S, Schneider G (1968) Circadianer Rhythmus der Pupillenweite im Ommatidium vonTenebrio molitor. Z Vergl Physiol 58:395–397Google Scholar
  37. Walcott B (1971a) Cell movement on light adaptation in the retina ofLethocerus (Belastomatidae, Hemiptera). Z Vergl Physiol 74:1–16Google Scholar
  38. Walcott B (1971b) Unit studies on receptor movement in the retina ofLethocerus (Belostomatidae, Hemiptera). Z Vergl Physiol 74:17–25Google Scholar
  39. Walcott B (1975) Anatomical changes during light adaptation in insect compound eyes. In: Horridge GA (ed) The compound eye and vision of insects. Oxford University Press, London, pp 20–33Google Scholar
  40. Wehner R (1981) Comparative physiology and evolution of vision in invertebrates. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6C). Springer, Berlin Heidelberg New York, pp 287–616Google Scholar
  41. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants. Akad Wiss Literatur Mainz, G Fischer Verlag, Stuttgart New York, pp 20fGoogle Scholar
  42. White RH, Gifford D, Michaud NA (1980) Turnover of photoreceptor membrane in the larval mosquito ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Plublishing Corporation, New York London, pp 271–296Google Scholar
  43. Williams DS (1980) Organisation of the compound eye of a tipulid fly during day and night. Zoomorphol 95:85–104Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Ursula Menzi
    • 1
  1. 1.Zoologisches Institut der UniversitätZürichSwitzerland

Personalised recommendations