Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal deformation of unidirectional hybrid composites. 2

  • 37 Accesses

  • 1 Citations

Conclusions

A variant of the solution of the problem of the thermorheologically complex temperature strain of a hybrid composite containing viscoelastic thermorheologically simple components with differing functions for temperature-time reduction in addition to elastic components, is proposed. An experimental study is conducted on unidirectional specimens of organic- and glass-fiber-reinforced plastic, organic- and carbon-fiber-reinforced plastic, and carbon- and glass-fiber-reinforced plastic at a constant rate of temperature change in the 20–150 °C range. Satisfactory correspondence is obtained between predicted and experimental data.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. A. Kochetkov, R. D. Maksimov, and V. M. Ponomarev, “Thermal deformation of unidirectional hybrid composites. Report 1,” Mekh. Kompoz. Mater., No. 2, 229–236 (1989).

  2. 2.

    R. A. Sheperi, “Viscoelastic behavior of composition materials,” in: Composition Materials [in Russian], Vol. 2, Moscow (1978), pp. 102–195.

  3. 3.

    Z. Hasin, E. A. Humphreys, and J. Goering, “Analysis of thermoviscoelastic behavior of unidirectional fiber composites,” Comp. Sci. Technol., 103–131 (1987).

  4. 4.

    V. T. Tomashevskii, “On mechanics problems in composite-material technology,” Mekh. Kompoz. Mater., No. 3, 486–503 (1982).

  5. 5.

    V. S. Ekel'chik, S. N. Kostritskii, and V. M. Ryabov, “Allowance for the rheology of polymeric composites in production problems involving the strength of thick-wall cylinders,” Mekh. Kompoz. Mater., No. 4, 701–707 (1983).

  6. 6.

    V. V. Bolotin, A. E. Efimov, N. S. Mesentsev, I. V. Shebunin, and V. N. Shchugorev, “Crack resistance of polymeric-binder composite materials at elevated temperatures,” Mekh. Kompoz. Mater., No. 5, 839–844 (1988).

  7. 7.

    Yu. S. Urzhumtsev and R. D. Maksimov, Deformability Prediction for Polymeric Composites [in Russian], Riga (1975).

  8. 8.

    V. A. Kochetkov, “Effective characteristics of the elastic and thermophysical properties of a unidirectional hybrid composite. Report 1,” Mekh. Kompoz. Mater., No. 1, 38–46 (1987).

  9. 9.

    V. A. Kochetkov, “Effective characteristics of the elastic and thermophysical properties of a unidirectional hybrid composite. Report 2,” Mekh. Kompoz. Mater., No. 2, 250–255 (1987).

  10. 10.

    V. M. Levin, “On the temperature-expansion coefficients of inhomogeneous materials,” Mekh. Tverd. Tela, No. 1, 88–94 (1967).

  11. 11.

    R. D. Maksimov and E. Z. Plume, “Predicting the creep of a unidirectional plastic with thermorheologically simple structural components,” Mekh. Kompoz. Mater., No. 6, 1081–1089 (1982).

  12. 12.

    A. A. Malmeister and Yu. O. Yanson, “Predicting the relaxation properties of epoxy binder ÉDT-10 in the complex stressed state,” Mekh. Kompoz. Mater., No. 5, 889–894 (1983).

  13. 13.

    I. A. Dzene, A. F. Kregers, and U. K. Vilks, “Peculiarities of the deformation process during the creep and repeated creep of polymers under uniaxial tension. Part 2,” Mekh. Polim., No. 4, 589–598 (1974).

  14. 14.

    V. A. Kochetkov, “Numeric conversion of a Laplace transform using interpolation quadrature equations,” Algor. Progr., No. 1, 46 (1985).

Download references

Author information

Additional information

For previous communication, see [1].

Translated from Mekhanika Kompozitnykh Materialov, No. 6, pp. 969–979, November–December, 1989.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kochetkov, V.A., Maksimov, R.D. Thermal deformation of unidirectional hybrid composites. 2. Mech Compos Mater 25, 690–699 (1990). https://doi.org/10.1007/BF00613356

Download citation

Keywords

  • Experimental Data
  • Experimental Study
  • Temperature Change
  • Hybrid Composite
  • Thermal Deformation