Advertisement

Journal of comparative physiology

, Volume 144, Issue 1, pp 127–137 | Cite as

The photosensory function of the pineal organ of the pike (Esox lucius L.) Correlation between structure and function

  • Jacky Falcón
  • Hilmar Meissl
Article

Summary

Electrical recordings from the exposed pineal organ of the pike (Esox lucius L.) were performed in order to localize the photoreceptive structures. Extracellular recordings showed a maintained activity of nerve fibers from the pineal tract and of single neurons from the distal region of the pineal organ. At increasing levels of steady exposure to white light, the impulse frequency decreased. Illumination of the organ with wavelengths between 380 and 710 nm resulted in an inhibition of the spike activity (achromatic response), associated with slow graded responses (electropinealogram, EPG). Sensitivity curves exhibited maxima at 530 and 620 nm in the light adapted, and one maximum at 530 nm in the dark adapted organ. In rare occasions, inhibitory (λmax 380 nm) and excitatory (λmax 620 nm) responses were recorded from single ganglion cells (chromatic response). Some observations (dark adaptation curves; intensity-duration relationship) suggest that the spike potentials and graded responses are probably not generated by the same structures. Moreover, slow potentials without spike potentials were recorded from isolated medial regions of the pineal where no nerve cells are observed.

The pineal organ of the pike appears to be a functional photoreceptive organ that may act as a dosimeter of solar radiation, and as an indicator of day-length. The morphological differentiation of its epithelium is closely related to its function, no electrical activity being propagated from the medial region to the brain.

Keywords

Medial Region Spike Activity Dark Adaptation Rare Occasion Extracellular Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

EPG

electropinealogram

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann Ch (1962) Lichtabhängige langsame Potentiale aus dem Stirnorgan des Frosches. Pfluegers Arch 276: 56–65Google Scholar
  2. Collin JP (1971) Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livingstone, Edinburgh London, pp 79–125Google Scholar
  3. Collin JP (1976) La rudimentation des photorécepteurs dans l'organe pinéal des vertébrés. In: Raynaud A (ed) Mécanismes de la rudimentation des organes chez les embryons de Vertébrés. Colloques Internationaux du CNRS no 266, Paris, pp 393–407Google Scholar
  4. Deguchi T (1979) Circadian rhythms of indolamines and serotonin N-acetyl-transferase activity in the pineal gland. Mol Cell Biochem 27:57–66Google Scholar
  5. Dodt E (1973) The parietal eye (pineal and parietal organs) of lower vertebrates. In: Jung R (ed) Handbook of sensory physiology, volVII/3B. Springer, Berlin Heidelberg New York, pp 113–140Google Scholar
  6. Dodt E, Heerd E (1962) Mode of action of pineal nerve fibers in frogs. J Neurophysiol 25:405–429Google Scholar
  7. Dodt E, Morita Y (1964) Purkinje-Verschiebung, absolute Schwelle und adaptives Verhalten einzelner Elemente der intrakranialen Anuren-Epiphyse. Vision Res 4:413–421Google Scholar
  8. Dodt E, Scherer E (1968) Photic responses from the parietal eye of the lizardLacerta sicula campestris (de Betta). Vision Res 8:61–72Google Scholar
  9. Donley CS, Meissl H (1979) Characteristics of slow potentials from the frog epiphysis (Rana esculenta); possible mass photoreceptor potentials. Vision Res 19:1343–1349Google Scholar
  10. Falcón J (1979a) L'organe pinéal du Brochet (Esox lucius L.). I. Etude anatomique et cytologique. Ann Biol Anim Biochem Biophys 19:445–465Google Scholar
  11. Falcón J (1979b) L'organe pinéal du Brochet (Esox lucius L.). II. Etude en microscopie électronique de la différenciation et de la rudimentation partielle des photorécepteurs; conséquences possibles sur l'élaboration des messages photosensoriels. Ann Biol Anim Biochem Biophys 19:641–688Google Scholar
  12. Falcon J (1979c) Unusual distribution of neurons in the pike pineal organ. In: Ariens Kappers J, Pévet P (eds) The pineal gland of vertebrates including man: Progress in brain research, vol 52. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 89–91Google Scholar
  13. Falcón J, Mocquard JP (1979) L'organe pinéal du Brochet (Esox lucius L.). III. Voies intrapinéales de conduction des messages photosensoriels. Ann Biol Anim Biochem Biophys 19:1043–1061Google Scholar
  14. Falcón J, Juillard MT, Collin JP (1980a) L'organe pinéal du Brochet (Esox lucius L.). IV. Sérotonine endogène et activité monoamine oxydasique; étude histochimique, ultracytochimique et pharmacologique. Reprod Nutr Dévelop 20:139–154Google Scholar
  15. Falcón J, Juillard MT, Collin JP (1980b) L'organe pinéal du Brochet (Esox lucius L.). V. Etude radioautographique de l'incorporationin vivo etin vitro de précurseurs indoliques. Reprod Nutr Dévelop 20:991–1010Google Scholar
  16. Hamasaki DI, Eder DJ (1977) Adaptive radiation of the pineal system. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 497–548Google Scholar
  17. Hamasaki DI, Esserman L (1976) Neural activity of the frog's frontal organ during steady illumination. J Comp Physiol 109:279–285Google Scholar
  18. Meiniel A, Hartwig HG (1980) Indoleamines in the pineal complex ofLampetra planeri (Petromyzontidae). A fluorescence microscopic and microspectrofluorimetric study. J Neural Transm 48:65–83Google Scholar
  19. Morita Y (1966a) Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pfluegers Arch 289:155–167Google Scholar
  20. Morita Y (1966b) Absence of electrical activity of the pigeon's pineal organ in response to light. Experientia 22:402Google Scholar
  21. Morita Y, Bergmann G (1971) Physiologische Untersuchungen und weitere Bemerkungen zur Struktur des lichtempfindlichen Pinealorgans vonPterophyllum scalare Cuv. et Val. (Cichlidae, Teleostei). Z Zellforsch 119:289–294Google Scholar
  22. Morita Y, Dodt E (1965) Nervous activity of the frog's epiphysis cerebri in relation to illumination. Experientia 21:221Google Scholar
  23. Morita Y, Dodt E (1973) Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopold 38:331–339Google Scholar
  24. Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 193–274Google Scholar
  25. Oksche A (1971) Sensory and glandular elements of the pineal organ. In: Wolstenholme GEW, Knight J (eds) The pineal gland. Churchill Livinstone, Edinburgh London, pp 127–146Google Scholar
  26. Oksche A, Hartwig HG (1975) Photoneuroendocrine systems and the third ventrical. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain endocrine interaction II. Karger, Basel, pp 40–53Google Scholar
  27. Oksche A, Hartwig HG (1979) Pineal sense organs — components of photoneuroendocrine systems. In: Ariens Kappers J, Pévet P (eds) The pineal organ of vertebrates including man: Progress in brain research, vol 52. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 113–130Google Scholar
  28. Owman C, Rüdeberg C (1970) Light, fluorescence, and electron microscopic studies on the pineal organ of the pike,Esox lucius L., with special regard to 5-hydroxytryptamine. Z Zellforsch 107:522–550Google Scholar
  29. Ralph CL, Dawson DC (1968) Failure of the pineal body of two species of birds (Coturnix japonica andPasser domesticus) to show electrical responses to illumination. Experientia 24:147–148Google Scholar
  30. Rusak B (1979) Neural mechanisms for entrainment and generation of mammalian circadian rhythms. Fed Proc 38:2589–2595Google Scholar
  31. Sillman AJ, Ito H, Tomita T (1969) Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res 9:1435–1442Google Scholar
  32. Takahashi JS, Menaker M (1979) Physiology of avian circadian pacemakers. Fed Proc 38:2583–2588Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jacky Falcón
    • 1
  • Hilmar Meissl
    • 1
  1. 1.Max-Planck-Institut für Physiologische und Klinische ForschungW.G. Kerckhoff-InstitutBad NauheimGermany

Personalised recommendations