Journal of comparative physiology

, Volume 117, Issue 2, pp 127–162

The rôle of retinula cell types in visual behavior ofDrosophila melanogaster

  • Martin Heisenberg
  • Erich Buchner
Article
  • 317 Downloads

Summary

We propose that inDrosophila melanogaster the optomotor response to both horizontal and vertical movement is mediated predominantly by the 6 large retinula cells (R1–6) in each facet of the compound eye. Evidence is presented which indicates that this may also be true for most of the other visual responses which at present can be quantitatively studied. These responses include visually controlled landing, pattern-induced orientation of flying and walking animals, the abnormal jump reflex of the mutant Hk1 (Kaplan, 1976) and probably also phototaxis. The only function for which the small retinula cells R7 and/or R8 seem to be required so far is spectral wavelength discrimination in phototaxis at high light intensity. Our hypothesis is based on studies of the receptor deficient mutantssevenless, outer rhabdomeres absent andreceptor degeneration B as well as on results of bleaching experiments by which the retinula cells R1–6 of the eye color mutantwhite can be reversibly blocked.

Visual performance of wild typeDrosophila in the optomotor response reflects receptor properties (visual acuity, spectral sensitivity and polarization sensitivity) expected for the R1–6 receptor subsystem. The notion of a ‘high sensitivity’ and a ‘high acuity’ state which was proposed earlier on the basis of experiments on various visual mutants is in agreement with the present results but their interpretation as reflecting properties of different receptor subsystems must be abandoned. Experimental data on wild type also suggest the existence of such an adaptational mechanism; this, however, remains to be demonstrated more conclusively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D.W.: Spatial and temporal integration properties of units in first optic ganglion of Dipterans. J. Neurophysiol.35, 429–444 (1972)Google Scholar
  2. Bertholf, L.M.: The extent of the spectrum forDrosophila and the distribution of stimulative efficiency in it. Z. vergl. Physiol.18, 32–64 (1933)Google Scholar
  3. Braitenberg, V., Hauser-Holschuh, H.: Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurons in relation to models of movement perception. Exp. Brain Res.16, 184–209 (1972)Google Scholar
  4. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics24, 85–101 (1976)Google Scholar
  5. Cosens, D.J., Briscoe, D.: A switch phenomenon in the compound eye of the white-eyed mutant ofDrosophila melanogaster. J. Insect Physiol.18, 627–632 (1972)Google Scholar
  6. Eckert, H.: Die spektrale Empfindlichkeit des Komplexauges vonMusca. Kybernetik9, 145–156 (1971)Google Scholar
  7. Eckert, H.: Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik14, 1–23 (1973)Google Scholar
  8. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 98–125. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  9. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l'oeil composé deDrosophila. Kybernetik8, 1–13 (1971)Google Scholar
  10. Götz, K.G.: Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik2, 77–92 (1964)Google Scholar
  11. Götz, K.G.: Flight control inDrosophila by visual perception of motion. Kybernetik4, 199–208 (1968)Google Scholar
  12. Harris, W.A., Stark, W.S., Walker, J.A.: Genetic dissection of the photoreceptor system in the compound eye ofDrosophila melanogaster. J. Physiol. (Lond.)256, 415–439 (1976)Google Scholar
  13. Hauser-Holschuh, H.: Vergleichende quantitative Untersuchungen an den Sehganglien der FliegenMusca domestica undDrosophila melanogaster. Doctoral Thesis, Eberhard-Karls-Universität, Tübingen (1975)Google Scholar
  14. Heisenberg, M.: Comparative behavioral studies on two visual mutants ofDrosophila. J. comp. Physiol.80, 119–136 (1972)Google Scholar
  15. Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision inDrosophila melanogaster. J. comp. Physiol.98, 217–241 (1975)Google Scholar
  16. Hotta, Y., Benzer, S.: Genetic dissection of theDrosophila nervous system by means of mosaics. Proc. nat. Acad. Sci. (Wash.)67, 1156–1163 (1970)Google Scholar
  17. Kaiser, W.: The relationship between visual movement detection and colour vision in insects. In: The compound eye and vision of insects. (G.A. Horridge, ed.), pp. 359–377. Oxford: Clarendon Press 1974Google Scholar
  18. Kaplan, W.D.: The use of double mutants in the investigation of visual mutants ofDrosophila (Abstract). Genetics83, s38-s39 (1976)Google Scholar
  19. Kaplan, W.D., Trout, W.E.: The behaviour of four neurological mutants ofDrosophila. Genetics61, 399–409 (1969)Google Scholar
  20. Kirschfeld, K.: Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Processing of optical data by organisms and machines. New-York-London: Academic Press 1969Google Scholar
  21. Kirschfeld, K.: Aufnahme und Verarbeitung optischer Daten im Komplexauge von Insekten. Naturwissenschaften58, 201–209 (1971)Google Scholar
  22. Kirschfeld, K.: The visual system ofMusca: Studies on optics, structure and function. In: Information processing in the visual system of arthropods (R. Wehner, ed.), pp. 61–74. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  23. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik5, 47–52 (1968)Google Scholar
  24. Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the flyMusca. Z. Naturforsch.29c, 95–97 (1974)Google Scholar
  25. Kirschfeld, K., Reichardt, W.: Optomotorische Versuche anMusca mit linear polarisiertem Licht. Z. Naturforsch.25b, 228 (1970)Google Scholar
  26. Kirschfeld, K., Snyder, W.: Waveguide mode effects, birefringence and dichroism in fly photoreceptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 56–77. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  27. McCann, G.D., Arnett, D.W.: Spectral and polarization sensitivity of the dipteran visual system. J. gen. Physiol.59, 534–558 (1972)Google Scholar
  28. McCann, G.D., MacGinitie, G.F.: Optomotor response studies of insect vision. Proc. roy. Soc. B163, 369–401 (1965)Google Scholar
  29. Menne, D., Spatz, H.C.: Color vision inDrosophila melanogaster. J. comp. Physiol.114, 301–312 (1977)Google Scholar
  30. Menzel, R.: Colour receptors in insects. In: The compound eye and vision of insects. (ed. G.A. Horridge), pp. 121–178. Oxford: Clarendon Press 1975Google Scholar
  31. Mimura, K.: Some spatial properties in the first optic ganglion of the fly. J. comp. Physiol.105, 65–82 (1976)Google Scholar
  32. Minke, B., Wu, C.F., Pak, W.L.: Isolation of light-induced response of the central retinula cells from the electroretinogram ofDrosophila. J. comp. Physiol.98, 345–355 (1975)Google Scholar
  33. Pak, W.L., Pinto, L.H.: Genetic approach to the study of the nervous system. Ann. Rev. Biophys. Bioengin.5, (1976)Google Scholar
  34. Pask, C., Snyder, A.W.: Angular sensitivity of lens-photoreceptor systems. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 159–166. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  35. Pick, B.: Visual flicker induces orientation behavior in the flyMusca. Z. Naturforsch.29c, 310–312 (1974)Google Scholar
  36. Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik13, 223–227 (1973)Google Scholar
  37. Poggio, T., Reichardt, W.: Visual control of orientation behavior of the fly. II. Towards the underlying neural interactions. Quart. Rev. Biophys.9 (3), 377–438 (1976)Google Scholar
  38. Reichardt, W., Poggio, T.: Visual control of orientation behaviour of the fly. I. A quantitative analysis. Quart. Rev. Biophys.9 (3), 311–375 (1976)Google Scholar
  39. Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik6, 149–162 (1969)Google Scholar
  40. Schümperli, R.A.: Evidence for colour vision inDrosophila melanogaster through spontaneous phototactic choice behaviour. J. comp. Physiol.86, 77–94 (1973)Google Scholar
  41. Snyder, A.W., Pask, C.: Spectral sensitivity of Dipteran retinula cells. J. comp. Physiol.84, 59–76 (1973)Google Scholar
  42. Stark, W.S.: Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila. J. comp. Physiol.96, 343–356 (1975)Google Scholar
  43. Strausfeld, N., Campos-Ortega, J.: Some interrelationships between the first and second synaptic regions of the fly's (Musca domestica) visual system. In: Information processing in the visual system of arthropods (ed. R. Wehner), pp. 23–30. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  44. Taddei-Ferretti, C., Fernandez Perez de Talens, A.: Landing reaction ofMusca domestica. Z. Naturforsch.28, 568–592 (1973)Google Scholar
  45. Uhland, L.: Die Kapelle. In: Gedichte. 1. Edition. Tübingen-Stuttgart; Cotta 1815Google Scholar
  46. Wehrhahn, C.: Evidence for the role of retinal receptors R7/8 in the orientation behaviour of the fly. Biol. Cybernetics21, 213–220 (1976)Google Scholar
  47. Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. vergl. Physiol.76, 233–244 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Martin Heisenberg
    • 1
  • Erich Buchner
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany
  2. 2.Institut für Genetik und Mikrobiologie der Universität WürzburgWürzburgGermany

Personalised recommendations