Journal of Comparative Physiology A

, Volume 164, Issue 1, pp 1–5 | Cite as

A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines ofSepia andLolliguncula

  • Bernd U. Budelmann
  • Horst Bleckmann


Many cephalopods have lines of ciliated cells on their head and arms. In the cuttlefishSepia and the squidLolliguncula, electrophysiological recordings clearly identify these epidermal lines as an invertebrate analogue to the mechanoreceptive lateral lines of fish and aquatic amphibians and thus as another example of convergent evolution between a sophisticated cephalopod and vertebrate sensory system. Stimulation of the epidermal lines with local water displacements, generated by a vibrating sphere, causes receptor potentials that have many features known from lateral line microphonic potentials. The minimal threshold of the head lines is 0.2 μm peak-to-peak water displacement (calculated at the skin surface) at 75–100 Hz.


Sensory System Skin Surface Line Analogue Lateral Line Water Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baglioni S (1910) Zur Kenntnis der Leistungen einiger Sinnesorgane (Gesichtssinn, Tastsinn und Geruchssinn) und des Zentralnervensystems der Zephalopoden und Fische. Z Biol 53:255–286Google Scholar
  2. Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62:471–514Google Scholar
  3. Bleckmann H (1986) The role of the lateral line in fish behavior. In: Pitcher TJ (ed) The behaviour of teleost fish. Croom Helm, London Sydney, pp 177–202Google Scholar
  4. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line system of the topminnowAplocheilus lineatus. Naturwissenschaften 68:624–625Google Scholar
  5. Bleckmann H, Jørgensen JM, Bullock TH (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray,Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161:67–84Google Scholar
  6. Budelmann BU (1980) Equilibrium and orientation in cephalopods. Oceanus 23:34–43Google Scholar
  7. Budelmann BU (in press) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, Münz H eds Neurobiology and evolution of the lateral line system. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Budelmann BU, Young JZ (1984) The statocyst-oculomotor system ofOctopus vulgaris: extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond B 306:159–189Google Scholar
  9. Budelmann BU, Sachse M, Staudigl M (1987) The angular acceleration receptor system ofOctopus vulgaris: morphometry, ultrastructure, and neuronal and synaptic organization. Phil Trans R Soc Lond B 315:305–343Google Scholar
  10. Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 595–617Google Scholar
  11. Dijkgraaf S (1963a) The functioning and significance of the lateral line organs. Biol Rev 38:51–105Google Scholar
  12. Dijkgraaf S (1963b) Versuche über Schallwahrnehmung bei Tintenfischen. Naturwissenschaften 50:50Google Scholar
  13. Elepfandt A, Wiedemer L (1987) Lateral-line response to water surface waves in the clawed frog,Xenopus laevis. J Comp Physiol A 160:667–682Google Scholar
  14. Flock Å (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol [Suppl] 199:1–90Google Scholar
  15. Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z Vergl Physiol 47:316–338Google Scholar
  16. Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not ‘deaf.’ Am Nat 129:312–317Google Scholar
  17. Hanlon RT, Hixon RF, Hulet WH (1983) Survival, growth, and behavior of the loliginid squidsLoligo plei, Loligo pealei, andLolliguncula brevis (Mollusca: Cephalopoda) in closed sea water systems. Biol Bull 165:637–685Google Scholar
  18. Harris GG, Bergeijk WA van (1962) Evidence that the lateral line organ responds to near field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841Google Scholar
  19. Jielof R, Spoor A, Vries HL de (1952) The microphonic activity of the lateral line. J Physiol (Lond) 116:137–157Google Scholar
  20. Josephson RK (1960) The response of a hydroid to weak waterborne disturbances. J Exp Biol 38:17–27Google Scholar
  21. Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 83–130Google Scholar
  22. Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–262Google Scholar
  23. Kroese AB, Zalm JM van der, Bercken J van den (1980) Extracellular receptor potentials from the lateral line organ ofXenopus laevis. J Exp Biol 86:63–77Google Scholar
  24. Maniwa Y (1976) Attraction of bony fish, squid and crab by sound. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 271–283Google Scholar
  25. Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in antartic fish to the movements of planktonic prey. Science 235:195–196Google Scholar
  26. Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fishSarotherodon niloticus L. J Comp Physiol A 157:555–568Google Scholar
  27. Naef A (1928) Die Cephalopoden. Embryologie. Fauna Flora Golf Neapel 35:1–357Google Scholar
  28. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307Google Scholar
  29. Sand O (1975) Effects of different ionic environments on the mechano-sensitivity of lateral line organs in the mudpuppy. J Comp Physiol 102:27–42Google Scholar
  30. Sand O (1984) Lateral line systems. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 3–32Google Scholar
  31. Späth M, Schweickert W (1977) The effect of metacaine (MS222) on the activity of the efferent and afferent nerves in the teleost lateral line system. Arch Pharmacol 297:9–16Google Scholar
  32. Sundermann G (1983) The fine structure of epidermal lines on arms and head of postembryonicSepia officinalis andLoligo vulgaris (Mollusca, Cephalopoda). Cell Tissue Res 232:669–677Google Scholar
  33. Sundermann-Meister G (1978) Ein neuer Typ von Cilienzellen in der Haut von spätembryonalen und juvenilenLoligo vulgaris (Mollusca, Cephalopoda). Zool Jahrb Abt Anat Ontog Tiere 99:493–499Google Scholar
  34. Wells MJ, Wells J (1956) Tactile discrimination and the behavior of blindOctopus. Publ Staz Zool Napoli 28:94–126Google Scholar
  35. Williamson R, Budelmann BU (1985) The response of theOctopus angular acceleration receptor system to sinusoidal stimulation. J Comp Physiol A 156:403–412Google Scholar
  36. Young JZ (1960) The statocysts ofOctopus vulgaris. Proc R Soc Lond B 152:3–29Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Bernd U. Budelmann
    • 1
    • 2
  • Horst Bleckmann
    • 1
    • 2
  1. 1.Marine Biomedical InstituteUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Neurobiology Unit, Scripps Institution of Oceanography, Department of Neurosciences, School of MedicineUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations