Advertisement

Journal of Comparative Physiology A

, Volume 159, Issue 1, pp 33–41 | Cite as

Sensory inputs to the nucleus basalis prosencephali, a feeding-pecking centre in the pigeon

  • Ulrich Schall
  • Juan D. Delius
Article

Summary

Evoked potentials were recorded from the nucleus basalis prosencephali (Bas) of the pigeon through chronically implanted electrodes. The auditory sensitivity of the Bas was assessed by the amplitude of the potentials. Audiograms thus obtained were comparable to those similarly measured from stations of the orthodox auditory pathway and resembled those obtained by others with behavioural techniques from the same species. The sensitivity to vibration applied to the beak was also measured. The vibrogram revealed two separate optima, one located in the lower frequency and another in the higher frequency region. These were shown to be due to trigeminal mechanoreceptive sensitivity and to bone/cochlea mediated sound sensitivity, respectively. Evoked potentials of the Bas in response to vestibular stimulation are described for the first time. The possibility that they were artefacts was excluded with several control procedures. These findings confirm recent anatomical evidence of a direct pathway from the vestibular nucleus to the nucleus basalis prosencephali. All afferents to the Bas are discussed in conjunction with the probable function of the nucleus as a sensorimotor coordinator of the pigeon's pecking/feeding behaviour.

Keywords

Frequency Region Probable Function Sensory Input Control Procedure Vestibular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

A

archistriatum

aL

area L of the medial neostriatum caudale

Bas

nucleus basalis prosencephali

Cb

cerebellum

FA

tractus fronto-archistriatalis

HA

hyperstriatum accessorium

Hp

hippocampus

HRP

horseradish peroxidase

HV

hyperstriatum ventrale

LLv

nucleus lemnisci lateralis, pars ventralis

LPO

lobus parolfactorius

MV

nucleus motorius nervi trigemini

MLd

nucleus mesencephalicus lateralis, pars dorsalis

nVI

nucleus nervi facialis

nVIII

nervus vestibulocochlearis

N

neostriatum

NFL

neostriatum frontolaterale

OM

tractus occipitomesencephalicus

Ov

nucleus ovoidalis

PrV

nucleus sensorius principalis nervi trigemini

QF

tractus quintofrontalis

Rpv

nucleus reticularis parvocellularis, pars lateralis

TrO

tractus opticus

VS

nucleus vestibularis superior

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkhoudt H, Dubbeldam JL, Zeilstra S (1981) Studies on the somatotopy of the trigeminal system in the mallard,Anas platyrhynchos L. IV. Tactile representation in the nucleus basalis. J Comp Neurol 196:407–420Google Scholar
  2. Berkhoudt H, Klein BG, Zeigler HP (1982) Afferents to the trigeminal and fascial motor nuclei in pigeon (Columba livia): Central connections of jaw motorneurons. J Comp Neurol 209:301–312Google Scholar
  3. Bonke D, Scheich H, Langner G (1979) Responsiveness of units in the auditory neostriatum of the Guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. I. Tonotopy and functional zones of field L. J Comp Physiol 132:243–255Google Scholar
  4. Boord RL (1968) Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J Comp Neurol 133:523–542Google Scholar
  5. Correia MJ, Eden AR, Westlund KN, Coulter JD (1982) Organization of ascending auditory pathways in the pigeon (Columba livia) as determined by autoradiographic methods. Brain Res 234:205–212Google Scholar
  6. Delius JD (1971) Foraging behavior patterns of herring gulls elicited by electrical forebrain stimulation. Experientia 27:1287–1289Google Scholar
  7. Delius JD (1985) The pecking of the pigeon: free for all. In: Lowe CF, Richelle M, Blackman DE, Bradshaw CM (eds) Behaviour analysis and contemporary psychology. Erlbaum, Hillsdale, pp 53–81Google Scholar
  8. Delius JD, Bennetto K (1972) Cutaneous sensory projections to the avian forebrain. Brain Res 37:205–221Google Scholar
  9. Delius JD, Runge TE, Oeckinghaus H (1979) Short latency auditory projections to the frontal telencephalon of the pigeon. Exp Neurol 63:594–609Google Scholar
  10. Dubbeldam JL, Brauch CSM, Don A (1981) Studies on the somatotopy of the trigeminal system in the mallard,Anas platyrhynchos L. III Afferents and organization of the nucleus basalis. J Comp Neurol 196:391–405Google Scholar
  11. Goerdel-Leich A, Schwartzkopff J (1984) The auditory threshold of the pigeon (Columba livia) by heart-rate conditioning. Naturwissenschaften 71:98Google Scholar
  12. Harman AL, Phillips RF (1967) Responses in the avian forebrain evoked by click stimuli. Exp Neurol 18:276–286Google Scholar
  13. Hörster W, Shen J, Schwartzkopff J (1983) Electrophysiological studies on the vibrational sensitivity in the pigeon. Naturwissenschaften 70:151Google Scholar
  14. Karten JH (1968) The ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephalicus lateralis, pars dorsalis). Brain Res 6:409–427Google Scholar
  15. Karten HJ (1969) The ascending auditory pathway in the pigeon (Columba livia). II Telencephalic projections of the nucleus ovoidalis thalami. Brain Res 11:134–153Google Scholar
  16. Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Johns Hopkins Press, Baltimore MarylandGoogle Scholar
  17. Karten HJ, Hodos W (1970) Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J Comp Neurol 140:35–52Google Scholar
  18. Kirsch M (1983) Antworteigenschaften und Verbindungen des akustischen Zentrums mit kurzer Latenz im frontalen Vorderhirn (Sturnus vulgaris L.). Verh Dtsch Zool Ges 76:296Google Scholar
  19. Klinke R, Schermuly L (1986) Inner ear mechanics of the crocodile and avian basilar papillae in comparison to neuronal data. Hearing Res (in press)Google Scholar
  20. Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon,Columba livia. J Comp Physiol 129:1–4Google Scholar
  21. Macdar AW, Rausch LJ, Wenzel BM, Hutchinson LV (1980) Electrophysiology of the olfactory pathway in the pigeon. J Comp Physiol 137:39–46Google Scholar
  22. Mallin HD, Delius JD (1983) Inter- and intraocular transfer of colour discriminations with mandibulation as an operant in the head-fixed pigeon. Behav Anal Lett 3:297–309Google Scholar
  23. Naumov NP, Iljitschev WD (1964) Klanganalyse im Großhirn der Vögel. Naturwissenschaften 51:644Google Scholar
  24. Necker R (1983) Somatosensory system. In: Abs M (ed) Physiology and behaviour of the pigeon. Academic Press, London, pp 169–192Google Scholar
  25. Necker R (1985) Receptors in the wing of the pigeon and their possible role in bird flight. In: Nachtigall W (ed) Biona Report 3. Gustav Fischer, Stuttgart, pp 433–444Google Scholar
  26. Parker DM, Delius JD (1972) Visual evoked potentials in the forebrain of the pigeon. Exp Brain Res 14:198–209Google Scholar
  27. Rieke GK, Wenzel BM (1978) Forebrain projections of the pigeon olfactory bulb. J Morphol 158:41–55Google Scholar
  28. Ritchie TLC, Cohen DH (1977) The avian tectofugal visual pathway: projections of its telencephalic target, the ectostriatal complex. Neurosci Abstr 3:275Google Scholar
  29. Schall U, Güntürkün O, Delius JD (1986) Sensory projections to the nucleus basalis prosencephali of the pigeon. Cell Tissue Res (in press)Google Scholar
  30. Schwartzkopff J (1949) Über Sitz und Leistung von Gehör und Vibrationssinn bei Vögeln. Z Vergl Physiol 31:527–608Google Scholar
  31. Shen J (1983) A behavioral study of vibrational sensitivity in the pigeon (Columba livia). J Comp Physiol 152:251–255Google Scholar
  32. Wallenberg A (1903) Der Ursprung des Tractus isthmo-striatus (oder bulbo-striatus) der Taube. Neurol Zentralbl 22:98–101Google Scholar
  33. Wallenberg A (1966) Beiträge zur vergleichenden Anatomie des Zentralnervensystems. J Hirnforsch 7:275–300Google Scholar
  34. Wild JM, Zeigler HA (1980) Central representation of the jaw muscles within the facial and trigeminal nuclei of the pigeon (Columba livia). J Comp Neurol 192:175–201Google Scholar
  35. Wild JM, Arends JJ, Zeigler HP (1984) A trigeminal sensorimotor circuit for pecking, grasping and feeding in the pigeon (Columba livia). Brain Res 300:146–151Google Scholar
  36. Wilson VJ, Felpel LP (1972) Specificity of semicircular input to neurons in the pigeon's vestibular nuclei. J Neurophysiol 35:253–264Google Scholar
  37. Witkovsky P, Silver R, Zeigler HP (1973) The nucleus basalis of the pigeon: a single unit analysis. J Comp Neurol 147:119–128Google Scholar
  38. Wold JE (1975) The vestibular nuclei in the domestic hen (Gallus domesticus). II. Primary afferents. Brain Res 95:531–543Google Scholar
  39. Zecha A (1962) The pyramidal tract and other telencephalic efferents in birds. Acta Morphol Neerl Scand 5:194–195Google Scholar
  40. Zeier H, Karten HJ (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res 31:313–326Google Scholar
  41. Zeigler HP, Miller M, Levine RR (1975) Trigeminal nerve and eating in the pigeon (Columba livia), neurosensory control of the consummatory responses. J Comp Physiol Psychol 89:845–858Google Scholar
  42. Zeigler HP (1976) Feeding behavior of the pigeon. Adv Study Behav 7:285–389Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Ulrich Schall
    • 1
  • Juan D. Delius
    • 1
  1. 1.Experimentelle TierpsychologiePsychologisches Institut, Ruhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations