Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrical conductivity of zinc ferrites near stoichiometry and manganese-zinc ferrites under vacuum or in the presence of oxygen

  • 75 Accesses

  • 3 Citations

Abstract

The electrical conductivity of zinc ferrites near stoichiometry and of manganese-zinc ferrites has been investigated as a function of temperature under vacuum and in the presence of oxygen. Under vacuum, the conductivity of these ferrites with iron excess is explained by the hopping mechanism, and with ZnO excess by the development of vacancies in octahedral sites of cation-deficient spinel. Activation energies and the transition temperatures are presented. During the oxidation in oxygen of Mn-Zn ferrites, the profile of the log σ= f(T) curves shows that the mechanism of electrical conduction in the temperature range 100 to 350 °C can be explained in terms of the oxidation of Fe2+ to Fe3+ ions at octahedral sites. For the temperature range 300 to 450 °C, the conductivity involves the hopping of electrons from octahedral sites of Mn3+ ions to octahedral sites of Mn4+ ions. Above 550 °C the oxidation of Mn2+ ions leads to a marked change in conductivity with the generation of new phases.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    F. K. Lotgering, J. Phys. Chem. Solids 25 (1963) 95.

  2. 2.

    B. Gillot, M. El Guendouzi, A. Rousset and P. Tailhades, J. Mater. Sci. 21 (1986) 2926.

  3. 3.

    P. Perriat and M. Abouaf, “Euro-Ceramics”, Vol. 3 (Elsevier Applied Science, Amsterdam, 1989) p. 237.

  4. 4.

    P. Perriat, M. Abouaf, D. Broussaud and J. L. Roland, “Advances in Ferrites”, Vol. 1 (ICFS, India, 1988) p. 75.

  5. 5.

    M. El Guendouzi, K. Sbai, P. Perriat and B. Gillot, Mater. Chem. Phys. 25 (1990) 429.

  6. 6.

    B. Gillot and M. El Guendouzi, Thermochim. Acta 162 (1990) 265.

  7. 7.

    L. G. van Ultert, J. Chem. Phys. 23 (1955) 1883.

  8. 8.

    K. Koumoto, H. Yanagida and S. Mizuta, J. Amer. Ceram. Soc. 63 (1980) 17.

  9. 9.

    B. Gillot and F. Jemmali, Phys. Status Solidi (a) 76 (1983) 601.

  10. 10.

    B. Gillot, R. M. Benloucif and A. Rousset, Mater. Res. Bull. 16 (1981) 481.

  11. 11.

    B. Gillot, M. El Guendouzi, P. Tailhades and A. Rousset, React. Solids 1 (1986) 139.

  12. 12.

    B. Gillot and J. F. Ferriot, J. Phys. Chem. Solids 37 (1976) 857.

  13. 13.

    B. Gillot, M. El Guendouzi and P. Tailhades, J. Mater. Sci. 19 (1984) 3806.

  14. 14.

    A. G. Rustamov, A. A. Samokhvalov and I. G. Fakidov, FTT 5 (1963) 1031 (Soviet Physics-Solid State 5, 751).

  15. 15.

    C. Prakash, J. Mater. Sci. Lett. 6 (1987) 651.

  16. 16.

    H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids 38 (1977) 859.

  17. 17.

    N. Rezlescu, D. Condurache, P. Petrariu and E. Luca, J. Amer. Ceram. Soc. 57 (1974) 40.

  18. 18.

    R. Satyanarayana, S. R. Murthy and T. S. Rao, J. Less-Common Metals 79 (1981) 1.

  19. 19.

    S. A. Mazen and B. A. Sabrah, Thermochim. Acta 105 (1986) 1.

  20. 20.

    H. I. Yoo and H. L. Tuller, J. Amer. Ceram. Soc. 70 (1987) 388.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gillot, B., El Guendouzi, M. & Perriat, P. Electrical conductivity of zinc ferrites near stoichiometry and manganese-zinc ferrites under vacuum or in the presence of oxygen. J Mater Sci 26, 4808–4812 (1991). https://doi.org/10.1007/BF00612421

Download citation

Keywords

  • Ferrite
  • Octahedral Site
  • Spinel Phase
  • Zinc Ferrite
  • Spinel Lattice