Advertisement

Journal of Materials Science

, Volume 26, Issue 17, pp 4808–4812 | Cite as

Electrical conductivity of zinc ferrites near stoichiometry and manganese-zinc ferrites under vacuum or in the presence of oxygen

  • B. Gillot
  • M. El Guendouzi
  • P. Perriat
Papers

Abstract

The electrical conductivity of zinc ferrites near stoichiometry and of manganese-zinc ferrites has been investigated as a function of temperature under vacuum and in the presence of oxygen. Under vacuum, the conductivity of these ferrites with iron excess is explained by the hopping mechanism, and with ZnO excess by the development of vacancies in octahedral sites of cation-deficient spinel. Activation energies and the transition temperatures are presented. During the oxidation in oxygen of Mn-Zn ferrites, the profile of the log σ= f(T) curves shows that the mechanism of electrical conduction in the temperature range 100 to 350 °C can be explained in terms of the oxidation of Fe2+ to Fe3+ ions at octahedral sites. For the temperature range 300 to 450 °C, the conductivity involves the hopping of electrons from octahedral sites of Mn3+ ions to octahedral sites of Mn4+ ions. Above 550 °C the oxidation of Mn2+ ions leads to a marked change in conductivity with the generation of new phases.

Keywords

Ferrite Octahedral Site Spinel Phase Zinc Ferrite Spinel Lattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. K. Lotgering, J. Phys. Chem. Solids 25 (1963) 95.CrossRefGoogle Scholar
  2. 2.
    B. Gillot, M. El Guendouzi, A. Rousset and P. Tailhades, J. Mater. Sci. 21 (1986) 2926.CrossRefGoogle Scholar
  3. 3.
    P. Perriat and M. Abouaf, “Euro-Ceramics”, Vol. 3 (Elsevier Applied Science, Amsterdam, 1989) p. 237.Google Scholar
  4. 4.
    P. Perriat, M. Abouaf, D. Broussaud and J. L. Roland, “Advances in Ferrites”, Vol. 1 (ICFS, India, 1988) p. 75.Google Scholar
  5. 5.
    M. El Guendouzi, K. Sbai, P. Perriat and B. Gillot, Mater. Chem. Phys. 25 (1990) 429.CrossRefGoogle Scholar
  6. 6.
    B. Gillot and M. El Guendouzi, Thermochim. Acta 162 (1990) 265.CrossRefGoogle Scholar
  7. 7.
    L. G. van Ultert, J. Chem. Phys. 23 (1955) 1883.CrossRefGoogle Scholar
  8. 8.
    K. Koumoto, H. Yanagida and S. Mizuta, J. Amer. Ceram. Soc. 63 (1980) 17.CrossRefGoogle Scholar
  9. 9.
    B. Gillot and F. Jemmali, Phys. Status Solidi (a) 76 (1983) 601.CrossRefGoogle Scholar
  10. 10.
    B. Gillot, R. M. Benloucif and A. Rousset, Mater. Res. Bull. 16 (1981) 481.CrossRefGoogle Scholar
  11. 11.
    B. Gillot, M. El Guendouzi, P. Tailhades and A. Rousset, React. Solids 1 (1986) 139.CrossRefGoogle Scholar
  12. 12.
    B. Gillot and J. F. Ferriot, J. Phys. Chem. Solids 37 (1976) 857.CrossRefGoogle Scholar
  13. 13.
    B. Gillot, M. El Guendouzi and P. Tailhades, J. Mater. Sci. 19 (1984) 3806.CrossRefGoogle Scholar
  14. 14.
    A. G. Rustamov, A. A. Samokhvalov and I. G. Fakidov, FTT 5 (1963) 1031 (Soviet Physics-Solid State 5, 751).Google Scholar
  15. 15.
    C. Prakash, J. Mater. Sci. Lett. 6 (1987) 651.CrossRefGoogle Scholar
  16. 16.
    H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids 38 (1977) 859.CrossRefGoogle Scholar
  17. 17.
    N. Rezlescu, D. Condurache, P. Petrariu and E. Luca, J. Amer. Ceram. Soc. 57 (1974) 40.CrossRefGoogle Scholar
  18. 18.
    R. Satyanarayana, S. R. Murthy and T. S. Rao, J. Less-Common Metals 79 (1981) 1.CrossRefGoogle Scholar
  19. 19.
    S. A. Mazen and B. A. Sabrah, Thermochim. Acta 105 (1986) 1.CrossRefGoogle Scholar
  20. 20.
    H. I. Yoo and H. L. Tuller, J. Amer. Ceram. Soc. 70 (1987) 388.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • B. Gillot
    • 1
  • M. El Guendouzi
    • 2
  • P. Perriat
    • 3
  1. 1.Faculté des Sciences MirandeLaboratoire de Recherches sur la réactivité des Solides UA 23Dijon CedexFrance
  2. 2.Faculté des Sciences IIUniversité Hassan IICasablancaMorocco
  3. 3.Thomson LCCBeaune CedexFrance

Personalised recommendations