Advertisement

Journal of Materials Science

, Volume 26, Issue 17, pp 4648–4656 | Cite as

Influence of fibre weight fraction on failure mechanisms of poly(ethylene terephthalate) reinforced by short-glass-fibres

  • Kiyoshi Takahashi
  • Nak-Sam Choi
Papers

Abstract

Failure mechanisms of short-glass-fibre reinforced poly(ethylene terephthalate) were investigated with particular attention to the effects of fibre weight fraction (Wf=1 wt%, 30 wt% and 60 wt%). A fracture morphology study was carried out for the surface and for the interior of uniaxial tensile specimens. On the surface, tensile cracks occurring mostly at the fibre ends seemed to be more influential in catastrophic fracture initiation with decreasing Wf. However, the failure mechanisms in the interior were different from those on the surface. For specimens of low Wf (1 wt%), shear bands grew around the fibre ends. A “specific layer” was formed in the matrix along the fibre-matrix interface and shear cracks propagated near the interface in the fibre length direction. The fibre pull-out from the matrix as well as the voiding at the fibre ends, induced by the shear cracks, had strong effect on the fracture initiation. For intermediate and higher Wf (30 wt% and 60 wt%), the shear-band induced cracking near the interface caused matrix shear cracking which was the most influential factor in the fracture initiation. The shear failure in the interior almost dominated the fracture processes throughout the specimens.

Keywords

Shear Band Shear Crack Failure Process Fracture Initiation Ethylene Terephthalate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Friedrich, in “Microstructure and fracture of fibre reinforced thermoplastic polyethylene terephthalate”, Fortschr.-Ber. VDI-Zeitschr. Series 18 No. 12 (VDI-Verlag, Düsseldorf 1982).Google Scholar
  2. 2.
    Idem, in “Fracture Mechanical Behavior of Short Fibre Reinforced Thermoplastics”, Fortschr.-Ber. VDI-Zeitschr. Series 18 No. 18 (VDI-Verlag, Düsseldorf 1984).Google Scholar
  3. 3.
    Idem, Comp. Sci. Tech. 22 (1985) 43.CrossRefGoogle Scholar
  4. 4.
    J. Krey, K. Friedrich and A. Moet, Polymer 29 (1988) 1433.CrossRefGoogle Scholar
  5. 5.
    J. C. Malzahn and J. M. Schultz, Comp. Sci. Tech. 27 (1986) 253.CrossRefGoogle Scholar
  6. 6.
    C. Lhymn and J. M. Schultz, J. Mater. Sci. 18 (1983) 2029.CrossRefGoogle Scholar
  7. 7.
    Idem, Polym. Eng. Sci. 24 (1984) 1064.CrossRefGoogle Scholar
  8. 8.
    C. Lhymn, J. Mater. Sci. Lett. 4 (1985) 1323.CrossRefGoogle Scholar
  9. 9.
    F. Ramsteiner and R. Theysohn, Comp. Sci. Tech. 24 (1985) 231.CrossRefGoogle Scholar
  10. 10.
    R. L. Hollis, R. Hammer and M. Y. Al-Jaroudi, J. Mater. Sci. 19 (1984) 1897.CrossRefGoogle Scholar
  11. 11.
    J. Karger-Kocsis and K. Friedrich, ibid. 22 (1987) 947.CrossRefGoogle Scholar
  12. 12.
    H. Voss and R. Walter, J. Mater. Sci. Lett. 4 (1985) 1174.CrossRefGoogle Scholar
  13. 13.
    K. Friedrich, K. Schulte, G. Horstenkamp and T. W. Chou, J. Mater. Sci. 20 (1985) 3353.CrossRefGoogle Scholar
  14. 14.
    R. W. Lang, J. A. Manson and R. W. Hertzberg, ibid. 22 (1987) 4015.CrossRefGoogle Scholar
  15. 15.
    N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, ibid. 19 (1984) 1145.CrossRefGoogle Scholar
  16. 16.
    Idem., J. Comp. Mater. 22 (1988) 850.CrossRefGoogle Scholar
  17. 17.
    N. Sato, T. Kurauchi and O. Kamigaito, J. Mater. Sci. 21 (1986) 1005.CrossRefGoogle Scholar
  18. 18.
    P. T. Curtis, M. G. Bader and J. E. Bailey, ibid. 13 (1978) 377.CrossRefGoogle Scholar
  19. 19.
    J. Yuan, A. Hiltner, E. Baer and D. Rahrig, ibid. 20 (1985) 4377.CrossRefGoogle Scholar
  20. 20.
    Idem, Polym. Eng. Sci. 24 (1984) 844.CrossRefGoogle Scholar
  21. 21.
    T. F. Maclaughlin, J. Comp. Mater. 2 (1968) 44.CrossRefGoogle Scholar
  22. 22.
    W. H. Bowyer and M. G. Bader, J. Mater. Sci. 7 (1972) 1315.CrossRefGoogle Scholar
  23. 23.
    F. Ramsteiner, Composites, 12 (1981) 65.CrossRefGoogle Scholar
  24. 24.
    K. Stade, Polym. Eng. Sci. 17 (1977) 50.CrossRefGoogle Scholar
  25. 25.
    W-Y. Chiu and G-D. Shyu, J. Appl. Polym. Sci. 34 (1987) 1493.CrossRefGoogle Scholar
  26. 26.
    B. Fisa, Polym. Composites, 6 (1985) 232.CrossRefGoogle Scholar
  27. 27.
    A. Salinas and J. F. T. Pittman, Polym. Eng. Sci. 21 (1981) 23.CrossRefGoogle Scholar
  28. 28.
    B. Franzen, C. Klason, J. Kubat and T. Kitano, Composites, 20 (1989) 65.CrossRefGoogle Scholar
  29. 29.
    R. von Turkovich and L. Erwin, Polym. Eng. Sci. 23 (1983) 743.CrossRefGoogle Scholar
  30. 30.
    N. S. Choi and K. Takahashi, in “Proceedings of Benibana International Symposium on how to improve the toughness of polymers and composites” edited by I. Narisawa (Yamagata, Japan, 1990) p. 249.Google Scholar
  31. 31.
    N. S. Choi and K. Takahashi, Comp. Sci. Tech., in press.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • Kiyoshi Takahashi
    • 1
  • Nak-Sam Choi
    • 1
  1. 1.Research Institute for Applied MechanicsKyushu UniversityFukuokaJapan

Personalised recommendations