Journal of comparative physiology

, Volume 118, Issue 1, pp 13–31 | Cite as

Reception of medium vibration by thoracal hairs of caterpillars ofBarathra brassicae L. (Lepidoptera, Noctuidae)

I. Mechanical properties of the receptor hairs
  • Jürgen Tautz
Article

Summary

  1. 1.

    The dependence of some mechanical parameters on defined stimulation by air medium vibration is described for vibration sensitive hairs on the thorax ofBarathra brassicae caterpillars.

     
  2. 2.

    The adequate stimulus for the hairs is a forced oscillation by medium vibration. There are 8 hairs on the thorax responsive to medium vibration: 4 on the 1st and 2 on the 2nd and 3rd segment each.

     
  3. 3.

    The hairs' geometric parameters are: length: 450–650μm (average: 500μm), basal diameter: 4–8 μm (average: 5 μm), average volume: 3300μm3, average mass 3.6 · 10−9 g.

     
  4. 4.

    The hairs on the first thoracic segment are bent and show an elliptic directional characteristic of mobility which is caused by the bending (Fig. 4). The straight erect hairs on the second and third segment show a circular profile of mobility (Fig. 2). All hairs can be bent to maximally 15° on each side from the resting position without touching the circular rim of their cuticular insertion.

     
  5. 5.

    The displacement resonance frequency of the hairs is in the range of 100–150 Hz. The loss factord0 and its reciprocal, theQ-factor, is determined to about 1.

     
  6. 6.

    Free oscillations of the hair are heavily damped. The frequency of the free damped oscillation is in the range of 130–250 Hz, the log decrement is about 4.0.

     
  7. 7.

    The necessary force for a constant hair displacement is dependent upon frequency. If one plots particle-displacement-amplitude against frequency a +12 dB/octave slope is found at higher frequencies.

     
  8. 8.

    At a driving frequency of 100 Hz, the hair acts as a linear system up to a deviation angle of 10°. For higher angles the hair gets progressively stiffer.

     
  9. 9.

    A mechanical model consistent of mass, resistance and compliance is developed for mechanoreceptive hairs of insects. This model is discussed in respect to the experimental results, to the physics of force driving the hair and the function of the filiform hairs as medium vibration receptors. The results show that the filiform hairs are almost optimally adapted receivers for air medium vibration in the frequency range 100–400 Hz for hair displacements not exceeding 0.2° from resting position.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, P.L., Dittmer, D.S.: Biology data book, Vol. III. Bethesda: Federation of American Societies for Experimental Biology 1975Google Scholar
  2. Beranek, L.: Acoustics. New York: McGraw-Hill 1954Google Scholar
  3. Bischof, H.-J.: Verteilung und Bewegungsweise der keulenförmigen Sensillen vonGryllus bimaculatus. Biol. Zbl.93, 449–457 (1974)Google Scholar
  4. Burkhardt, D.: Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergebn. Biol.22, 226–267 (1960)Google Scholar
  5. Chapman, K.M., Duckrow, R.B.: Compliance and sensitivity of a mechanoreceptor of the insect exosceleton. J. comp. Physiol.100, 251–268 (1975)Google Scholar
  6. Görner, P., Andrews, P.: Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen). Z. vergl. Physiol.64, 301–317 (1969)Google Scholar
  7. Hoffmann, Ch.: Bau und Funktion der Trichobothrien vonEuscorpius carpathicus L. Z. vergl. Physiol.54, 290–352 (1967)Google Scholar
  8. Jensen, M., Weis-Fogh, T.: Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Phil. Trans. B245, 137–163 (1962)Google Scholar
  9. Landau, L.D., Lifschitz, E.M.: Lehrbuch der theoretischen Physik, Bd. VI Hydrodynamik. Berlin: Akademie-Verlag 1966Google Scholar
  10. Markl, H., Tautz, J.: The sensitivity of hair receptors in caterpillars ofBarathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J. comp. Physiol.99, 79–87 (1975)Google Scholar
  11. Meyer, E., Guicking, D.: Schwingungslehre. Braunschweig: Vieweg 1974Google Scholar
  12. Michelsen, A.: The physiology of the locust ear. II. Frequency discrimination based upon resonances in the tympanum. Z. vergl. Physiol.71, 63–101 (1971)Google Scholar
  13. Nicklaus, R.: Die Erregung einzelner Fadenhaare vonPeriplaneta americana in Abhängigkeit von der Größe und Richtung der Auslenkung. Z. vergl. Physiol.50, 331–362 (1965)Google Scholar
  14. Petrovskaya, E.D., Rozhkova, G.I., Tokareva, V.S.: Single cercal receptor characteristics in the cricket (Gryllus domesticus). Biofizika15, 112–119 (1970) [Russ., Engl. Summary]Google Scholar
  15. Skudrzyk, E.: Die Grundlagen der Akustik. Wien: Springer 1954Google Scholar
  16. Smola, U.: Untersuchung zur Topographie, Mechanik und Strömungsmechanik der Sinneshaare auf dem Kopf der WanderheuschreckeLocusta migratoria. Z. vergl. Physiol.67, 382–402 (1970)Google Scholar
  17. Snowdon, J.C.: Vibration and shock in damped mechanical systems. New York: John Wiley & Sons 1968Google Scholar
  18. Yes'kov, Y.K.: Phonoreceptors of honey bees. Biofizika20, 646–651 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Jürgen Tautz
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations