Journal of Comparative Physiology A

, Volume 159, Issue 2, pp 275–280 | Cite as

Gravity as an orientation guide during web-construction in the orb spiderAraneus diadematus (Araneae, Araneidae)

  • Fritz Vollrath


The effect of gravity on the web building behaviour of the common garden spiderAraneus diadematus was studied in three ways: (i) frames with partially completed vertical webs were swivelled into a horizontal position, (ii) by rotating frames with spiders in a vertical klinostat (1 rpm), and (iii) by vertically rotating a partially completed web treadmill fashion keeping the building animal in a certain position in space.

(i) In the horizontal, radial wheels are not constructed, however, a more or less irregular spiral is added to a completed wheel; (ii) in the klinostat the radial wheel lacks the up/down distinction of normal webs, and the spiral is irregular; (iii) in the treadmill the spiral course is abnormal, and the degree of deviation depends on the position of the animal. If the body axis is parallel to gravity the spiral path deviates to both sides of the norm. In ag perpendicular body position the path deviates predominantly to one side, spiralling sharply inwards towards the hub. The observations suggest that the cyclic changes in the body position of spiral-buildingAraneus are an important component of the animal's orientation during this phase of web-construction.


Body Position Horizontal Position Common Garden Body Axis Cyclic Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartels M (1929) Sinnesphysiologische und physiologische Untersuchungen an der TrichterspinneAgelena labyrinthica. Z Vergl Physiol 10:527–591Google Scholar
  2. Denny M (1976) The physical properties of spider silk and their role in the design of orb-webs. J Exp Biol 65:483–506Google Scholar
  3. Dethier VG (1966) The physiology of insect senses. Chapman & Hall, LondonGoogle Scholar
  4. Eberhard WG (1975) The inverted ladder orb web ofScloderus sp. and the intermediate orb ofEustala(?) sp. (Araneae: Araneidae). J Nat Hist 9:93–106Google Scholar
  5. Eberhard WG (1981) Construction behaviour and the distribution of tensions in webs. Bull Br Arachnol Soc 5:189–204Google Scholar
  6. Eberhard WG (1982) Behavioural characters for the higher classification of orb-weaving spiders. Evolution 36:1067–1095Google Scholar
  7. Finck A (1982) Gravito-inertial sensitivity of the spider,Araneus sericatus. Physiologist Suppl 25:121–122Google Scholar
  8. Finck A (1984) Inhibition of the spider heartbeat by gravity and vibration. Physiologist Suppl 26:147–148Google Scholar
  9. Foelix R (1983) Biology of spiders. Harvard University Press, Cambridge Mass.Google Scholar
  10. Görner P (1958) Die optische und kinästhetische Orientierung der TrichterspinneAgelena labyrinthica Z Vergl Physiol 41:111–153Google Scholar
  11. Görner P, Claas B (1985) Homing behaviour and orientation in the funnel-web spiderAgelena labyrinthica Clerck. In: Barth FG (ed) Neurobiology of Arachnids. Springer, Berlin Heidelberg New York, pp 275–298Google Scholar
  12. Gould JL (1984) Natural history of honeybee learning. In: Marler P, Terrace HS (eds), The biology of learning. Springer, Berlin Heidelberg New York, pp 149–180Google Scholar
  13. Hingston RWG (1920) A naturalist in Himalaya. Witherby, LondonGoogle Scholar
  14. König M (1951) Beiträge zur Kenntnis des Netzbaus orbiteler Spinnen. Z Tierpsychol 8:462–492Google Scholar
  15. Land M (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of Arachnids. Springer, Berlin Heidelberg New York, pp 53–79Google Scholar
  16. Lassen H, Toltzin E (1940) Tierpsychologische Studien an Radnetzspinnen. Z Vergl Physiol 27:615–630Google Scholar
  17. LeGuelte L (1966) Structure de la toile deZygiella x-notata Cl. (Araignées, Argiopidae) et facteurs qui regissent le comportement de l'Araignée pendent la construction de la toile. Thèse, Publ. Université de NancyGoogle Scholar
  18. LeGuelte L (1969a) Comportement de construction de l'araignée et tension des premières rayons de sa toile. Rev Comportement animal 3:27–32Google Scholar
  19. LeGuelte L (1969b) Learning in spiders. Am Zool 9:145–152Google Scholar
  20. Levi HW (1978) Orb-webs and phylogeny of orb-weavers. Symp Zool Soc Lond 42:1–15Google Scholar
  21. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45:475–569Google Scholar
  22. Markl H (1975) The perception of gravity and angular acceleration in invertebrates. In: Kornhuber HH (ed) Vestibular system, part I (Handbook of sensory physiology, vol VI/1) Springer, Berlin Heidelberg New York, pp 17–74Google Scholar
  23. Mayer G (1952) Untersuchungen über die Herstellung und Struktur des Radnetzes vonAranea diademata undZilla x-notata mit besonderer Berücksichtigung des Unterschiedes von Jugend und Altersnetzen. Z Tierpsychol 9:337–364Google Scholar
  24. Mittelstaedt H (1950) Physiologie des Gleichgewichtssinnes bei fliegenden Libellen. Z Vergl Physiol 32:422–463Google Scholar
  25. Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (ed) Neurobiology of Arachnids. Springer, Berlin Heidelberg New York, pp 298–316Google Scholar
  26. Peters HM (1932) Experimente über die Orientierung der KreuzspinneEpeira diademata Cl. im Netz. Zool Jb Physiol 51:239–288Google Scholar
  27. Peters HM (1933) Kleine Beiträge zur Biologie der KreuzspinneEpeira diademata Cl. Z Morphol Ökol Tiere 26:447–468Google Scholar
  28. Peters HM (1937) Studien am Netz der Kreuzspinne (Aranea diademata). I. Die Grundstruktur des Netzes und Beziehungen zum Bauplan des Spinnenkörpers; II. Über die Herstellung des Rahmens, der Radialfäden und der Hilfsspirale. Z Morphol Ökol Tiere: 32:613–649; 33:128–150Google Scholar
  29. Peters HM (1939) Über das Kreuzspinnennetz und seine Probleme. Naturwissenschaften 27:777–789Google Scholar
  30. Ramousse R, LeGuelte L (1979) Relations spatio-temporelles dans le comportement constructeur chez l'Epeire diadème. Rev Arachnol 2:183–192Google Scholar
  31. Robinson MH, Robinson B (1972) The structure, possible function and origin of the remarkable ladder-web built by a New Guinea orb-web spider. J Nat Hist 6:687–694Google Scholar
  32. Schöne H (1982) Orientation. In: McFarland D (ed) The Oxford companion to animal behaviour. Oxford University Press, Oxford, pp 429–438Google Scholar
  33. Seyfarth EA (1985) Spider proprioception: receptors, reflexes, and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 230–249Google Scholar
  34. Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Idiothetic orientation of a wandering spider — compensation of detours and estimate of goal distance. Behav Ecol Sociobiol 11:139–148Google Scholar
  35. Simpson GG, Roe A, Lewontin RC (1960) Quantitative zoology. Harcourt, Brace & WorldGoogle Scholar
  36. Suter RB (1984) Web tension and gravity as cues in spider orientation. Behav Ecol Sociobiol 16:31–36Google Scholar
  37. Vollrath F (1982) Colony foundation in a social spider. Z Tierpsychol 60:313–324Google Scholar
  38. Vollrath F, Mohren W (1985) Spiral geometry in the garden spider's orb web. Naturwissenschaften 72:666–667Google Scholar
  39. Vowles DM (1954) The orientation of ants. II. Orientation to light, gravity and polarized light. J Exp Biol 31:365–375Google Scholar
  40. Witt PN, Reed CF (1965) Spider-web building. Science 149:1190–1197Google Scholar
  41. Witt PN, Scarboro MP, Peakall DP, Gause R (1977) Spider web-building in outer space: Evalutation of records from the Skylab spider experiment. Am J Arachnol 4:115–124Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Fritz Vollrath
    • 1
  1. 1.Department of ZoologyOxfordUK

Personalised recommendations