Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calculation of transverse and interply stresses in cylindrical shells made of laminated composites in dynamic compressive loading

  • 24 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. E. Bogdanovich and É. G. Feldmane, “Calculation of the load-carrying capacity of composite cylindrical shells in dynamic loading,” Mekh. Kompozitn. Mater., No. 3, 476–484 (1980).

  2. 2.

    A. E. Bogdanovich and É. G. Feldmane, “Deformation of composite cylindrical shells in combined dynamic loading,” Mekh. Kompozitn. Mater., No. 3, 461–473 (1981).

  3. 3.

    A. E. Bogdanovich and É. G. Feldmane, “Axisymmetric deformation and strength of laminated cylindrical shells in axial shock loading,” Mekh. Kompozitn. Mater., No. 4, 653–662 (1982).

  4. 4.

    A. E. Bogdanovich and É. G. Feldmane, “Numerical examination of the process of buckling and analysis of the strength of laminated cylindrical shells in axial shock loading,” Mekh. Kompozitn. Mater., No. 5, 822–832 (1982).

  5. 5.

    S. G. Lekhnitskii, “Bending of heterogeneous anisotropic thin plates with symmetric structure,” Prikl. Mat. Mekh.,5, No. 1, 71–92 (1941).

  6. 6.

    S. A. Ambartsumyan, “Main equations of the theory of the thin laminated shell,” Dokl. Akad. Nauk Arm. SSR,8, No. 5, 203–210 (1948).

  7. 7.

    A. E. Bogdanovich and É. G. Feldmane, “Analysis of nonsymmetric buckling of cylindrical shells in axial dynamic compressive loading,” Izv. Akad. Nauk SSR, Mekh. Tverd. Tela, No. 2, 144–154 (1982).

  8. 8.

    A. E. Bogdanovich and É. G. Feldmane, “Buckling of cylindrical shells in dynamic external pressure loading,” in: Electrodynamics and Mechanics of Solids. Mathematical Modeling [in Russian], Riga (1982), pp. 109–122.

  9. 9.

    V. V. Novozhilov, Elasticity Theory [in Russian], Leningrad (1958).

  10. 10.

    V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability [in Russian], Moscow (1961).

  11. 11.

    S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Moscow (1961).

  12. 12.

    Sh. Ch. Chou, “Delamination of T300-5208 graphite epoxy composites,” in: Strength and Fracture of Composite Materials [in Russian], Riga (1983), pp. 136–145.

  13. 13.

    A. E. Bogdanovich and V. P. Tamuzh, “Strength of cylindrical shells made of laminated composites in dynamic loading,” Mekh. Kompozitn. Mater., No. 3, 460–467 (1982).

  14. 14.

    T. T. Shih and W. A. Logsdon, “Fracture behavior of a thick-section graphite/epoxy composite,” in: Fracture Mechanics, Proceedings of the 13th National Symposium, Philadelphia, June (1980), Philadelphia (1981), pp. 316–337.

  15. 15.

    R. P. Shlitsa and Yu. B. Spridzans, “Experimental evaluation of the resistance of carbon-reinforced plastics to transverse separation,” Mekh. Polim., No. 2, 240–245 (1974).

  16. 16.

    A. E. Bogdanovich and É. V. Yarve, “Analysis of stresses in multiply beams in transverse dynamic bending,” Mekh. Kompozitn. Mater., No. 5, 824–837 (1983).

  17. 17.

    Sh. U. Galiev, V. A. Romashchenko, and Z. G. Alpaidze, “Effect of anisotropy and viscosity on the propagation of waves in multiply cylinders,” Probl. Prochn., No. 9, 40–44 (1983).

  18. 18.

    Sh. U. Galiev and V. A. Romashchenko, “Nonstationary dynamics and strength of hollow viscoelastic anisotropic multiply cylinders of finite length,” Mekh. Kompozitn. Mater., No. 4, 681–685 (1984).

Download references

Author information

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 455–467, May–June, 1985.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bogdanovich, A.E. Calculation of transverse and interply stresses in cylindrical shells made of laminated composites in dynamic compressive loading. Mech Compos Mater 21, 306–315 (1985). https://doi.org/10.1007/BF00611616

Download citation

Keywords

  • Cylindrical Shell
  • Compressive Loading
  • Laminate Composite
  • Dynamic Compressive Loading