Optical and Quantum Electronics

, Volume 23, Issue 8, pp 995–1010 | Cite as

The humming telephone as an acoustic maser

  • L. W. Casperson
Tutorial Review


Beginning more than a century ago, undamped oscillations in active electroacoustic resonators were subjected to rigorous experimental and theoretical study. Such concepts as waveguiding, mode pulling, mode hopping, and bistability, which have been rediscovered in their laser context, were all recognized and at least partially understood in the apparatus known as the humming telephone.


Communication Network Undamped Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Townes, Discussion on paramagnetic relaxation, in ‘Quantum Electronics, A Symposium’, edited by C. H. Townes, (Columbia University Press, New York, 1960); pp. 405–409.Google Scholar
  2. 2.
    C. Kittel,Phys. Rev. Lett. 6 (1961) 449.Google Scholar
  3. 3.
    E. B. Tucker,Phys. Rev. Lett. 6 (1961) 547.Google Scholar
  4. 4.
    A. B. Pippard,The Philosophical Magazine 8 (1963) 161.Google Scholar
  5. 5.
    R. Y. Chiao andC. H. Townes,Phys. Rev. Lett. 12 (1964) 592.Google Scholar
  6. 6.
    N. S. Shiren,Appl. Phys. Lett. 7 (1965) 142.Google Scholar
  7. 7.
    M. F. Lewis,Phys. Lett. 20 (1966) 372.Google Scholar
  8. 8.
    P. D. Peterson andE. H. Jacobsen,Science 164 (1969) 1065.Google Scholar
  9. 9.
    V. A. Golenishchev-Kutuzov, R. V. Saburova andN. A. Shamukov,Uspekhi 19 (1976) 449.Google Scholar
  10. 10.
    W. E. Bron andW. Grill,Phys. Rev. Lett. 40 (1978) 1459.Google Scholar
  11. 11.
    E. N. Ganopol'skii andD. N. Makovitskii,JETP Lett. 28, (1978) 217.Google Scholar
  12. 12.
    P. Hu,Phys. Rev. Lett. 44 (1980) 417.Google Scholar
  13. 13.
    W. Grill andL. Hirschbiegel,Phys. Rev. B31 (1985) 8148.Google Scholar
  14. 14.
    D. E. Hughes, “On the physical action of the microphone” in Proceedings of the Physical Society of London, vol. 2, pp. 255–261, London, July 1878.Google Scholar
  15. 15.
    Idem, Nature,18 (1878) 239.Google Scholar
  16. 16.
    Idem, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,6 (1878) 44.Google Scholar
  17. 17.
    Idem, Journal of the Society of Telegraph Engineers and Electricians 12 (1883) 244.Google Scholar
  18. 18.
    A. L. Albert, ‘Electrical Communication’ (John Wiley and Sons, New York, 1940) p. 9.Google Scholar
  19. 19.
    D. E. Hughes, “On the action of sonorous vibrations in varying the force of an electric current”, in Proceedings of the Royal Society of London, London, vol. 27, 9 May 1878, pp. 362–369.Google Scholar
  20. 20.
    F. S. Goucher,Bell Syst. Tech. J. 13 (1934) 163.Google Scholar
  21. 21.
    A. G. Debus (ed), ‘World Who's Who in Science from Antiquity to the Present’, (Marquis, Chicago, 1968) p. 840.Google Scholar
  22. 22.
    T. A. Edison,The Chem. News and J. of Phys. Sci. 37 (1878) 198 and references therein.Google Scholar
  23. 23.
    B. Gherardi andF. B. Jewett,Transactions of the American Institute of Electrical Engineers 38 (1919) 1287.Google Scholar
  24. 24.
    A. S. Hibbard, ‘Electrical Worlds’ (Sept. referenced in [26–29], 1980).Google Scholar
  25. 25.
    A. G. Debus (ed)World Who's Who in Science from Antiquity to the Present, (Marquid, Chicago, 1968) p. 797.Google Scholar
  26. 26.
    F. Gill,Journal of the Institution of Electrical Engineers 31 (1901–02) 388.Google Scholar
  27. 27.
    A. E. Kennelly andW. L. Upson, “The humming telephone,” Proceedings of the American Philosophical Society, vol. 47, July 1908, pp. 329–365.Google Scholar
  28. 28.
    W. H. Eccles, ‘Wireless Telegraphy and Telephony, A Handbook of Formulae, Data and Information’, (Benn Brothers Ltd, London, 1918) p. 260.Google Scholar
  29. 29.
    A. E. Kennelly, ‘Electrical Vibration Instruments’, (MacMillans, New York, 1923).Google Scholar
  30. 30.
    Idem, ibid., ch. 23.Google Scholar
  31. 31.
    L. Ronchi andA. M. Scheggi,Adv. in Electron. and Electron Phy. 51 (1980) 63.Google Scholar
  32. 32.
    V. Belevitch, Proceedings of the Institute of Radio Engineers, Vol. 50, pp. 848–855, May 1962.Google Scholar
  33. 33.
    A. E. Kennelly, ‘Tables of Complex Hyperbolic and Circular Functions’, (Harvard University Press, Cambridge, Massachusetts, 1914).Google Scholar
  34. 34.
    See for example,W. H. Beyer (ed), ‘CRC Standard Mathematical Tables’, 27th Edition, (CRC Press, Boca Raton, Florida, 1984) p. 184.Google Scholar
  35. 35.
    A. E. Kennelly, ‘Electrical Vibration Instruments,’ (Macmillan, New York, 1923) Appendix 3.Google Scholar
  36. 36.
    Idem, ibid., Appendix 6.Google Scholar
  37. 37.
    L. W. Casperson,Phys. Rev. A. 42 (1990) 6721.Google Scholar
  38. 38.
    C. H. Townes, “Some applications of optical and infrared masers,” in ‘Advances in Quantum Electronics’, J. R. Singer, editor, (Columbia University Press, New York, 1961), pp. 3–11.Google Scholar
  39. 39.
    W. R. Bennett, Jr.,Phys. Rev. 126 (1962) 580.Google Scholar
  40. 40.
    P. J. Herre andU. Barabas,IEEE J. of Quantum Electron. 25 (1989) 1794.Google Scholar
  41. 41.
    A. Dienes,IEEE J. of Quantum Electron. QE-5 (1969) 246.Google Scholar
  42. 42.
    Y. Cho andT. Umeda,Opt. Commun. 59 (1986) 131.Google Scholar
  43. 43.
    D. L. Richards andD. C. A. Connolly,Electronics and Power 22 (1976) 168.Google Scholar
  44. 44.
    M. F. Lewis,Ultrasonics 12 (1974) 115.Google Scholar
  45. 45.
    C. M. Boyne andM. F. Lewis, “A wideband frequency memory using an overmoded SAW oscillator,” paper J-5, presented at the 1981 IEEE Ultrasonics Symposium, Chicago, Illinois, 14–16 October 1981.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • L. W. Casperson
    • 1
  1. 1.Department of PhysicsUniversity of OtagoDunedinNew Zealand

Personalised recommendations