Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrodissolution de la millérite en milieu chlorhydrique

  • 26 Accesses

  • 9 Citations

Résumé

L'électrodissolution deβMS synthétisé a été étudiée en milieu d'acide chlorhydrique à 25° C. L'influence de la concentration des ions d'hydrogène (pH 0.46–2.68), de nickel (0–1 M) et de chlore (1–4 M) a été examinée. Les études potentiocinétiques et potentiostatiques ainsi que les diagrammesE-pH de NiS-H2O ont clarifié la cinétique électrochimique et le mécanisme de dissolution deβNiS. La surface attaquée et les produits de corrosion ont été examiné par rayons-X, microscopie électronique à balayage, dispersion des rayons-X et absorption atomique.

Abstract

The electrodissolution of syntheticβMS has been studied in hydrochloric acid at 25° C. The influence of hydrogen ions (pH 0.46–2.68), nickel ions (0–1 M) and chloride ions (1–4 M) has been examined. Potentiokinetic and potentiostatic studies and alsoE-pH diagrams of NiS-H2O clarified the electrochemical kinetics and mechanism of the dissolution ofβNiS. The attacked surface and dissolution products were examined by X-rays, scanning electron microscopy, X-ray dispersion and atomic absorption.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    L. A. Sinev, T. R. Soboleva and El. A. Shamro,Izv. Yyssh. Uchebn. Zaved Tsvetn. Metall. 4 (1975) 35.

  2. [2]

    D. V. Subrahmanyam and E. L. Ghali,J. Appl. Electrochem. 8 (1978) 313.

  3. [3]

    C. Méric, Centre de Recheiche du Moyen Nord. U.Q.A.C. Chicoutimi, Canada (1978) pp. 65.

  4. [4]

    K. Tokio and I. Takéo,Nip. Ginz. Gakka 37 (1973) 1338.

  5. [5]

    K. Hubner,Phys. Stat. Solidi (b)69 Kl (1975).

  6. [6]

    S. Hufner and G. K. Weitheim,Phys. Lett. A 44 (1973) 133.

  7. [7]

    R. Jaisinski,Electrochem. Soc. 116 (1969) 452.

  8. [8]

    G. Kullerud and R. A. Yund,J. Petrol. 3 Part 1 (1962) 126.

  9. [9]

    R. Hans,J. Phys. Chem. Solids 36 (1975) 1199.

  10. [10]

    K. Tokio and I. Takéo,Nip. Ginz. Gakka 38 (1974) 663.

  11. [11]

    A. A. Bulakl and O. A. Khan,Zhur. Priklad. Khim. J. Appl. Chem., USSR 27 (1954) 166.

  12. [12]

    D. F. A. Kock, ‘Modern Aspects of Electrochemistry” Vol. 10, Plenum Press, New York (1975).

  13. [13]

    H. Majima and E. Peters,International Mineral Processing Congress, Leningrad, (1968).

  14. [14]

    A. H. Abramovet al., Izv. Vyss. Uch. Zaved. Tsvetn. Met. 17 (1974) 25.

  15. [15]

    E. Peters, ‘Trends in Electrochemistry’, University of British Columbia, Canada, Vancouver (1977) p. 267.

  16. [16]

    P. D. Scott and M. H. Nicol, ‘Trends in Electrochemistry’ (edited by D. Bockris, B. Rand and J. Welch) Plenum Press, New York (1977) p. 303.

  17. [17]

    J. Horvath and M. Novak, ‘Corrosion Science’, Vol.4, University of Szeged, Hungary (1964) 159.

  18. [18]

    A. Thiel and D. Gessner,Z. Anorg. Chem. 86 (1914) 1.

  19. [19]

    G. N. Dobrokhotov,Zh. Priklad. Khim. (1959) 2524.

  20. [20]

    M. Lutz and H. Haeusler,Z. Naturforsch. B26 (1971) 1096.

  21. [21]

    J. E. Dutrizac, Mines and Resources Laboratories of Ottawa, (1978).

  22. [22]

    J. P. Gamondes and M. Lafitte,Marseille Rev. Chimie Minérale 6 (1969) 755.

  23. [23]

    S. Srinivasan and E. Gileadi,Electrochem. Acta 11 (1969) 321.

  24. [24]

    D. Deroo, Thèse Doctorat, Grenoble, 11 mars (1977) p. 27.

  25. [25]

    R. L. Paul, M. J. Nicol, J. W. Diggle and A. P. Saunders,Electrochem. Acta 23 (1978) 625.

  26. [26]

    H. Uhlig, Dunod, Paris (1970) p. 72.

  27. [27]

    J. Gerlach, F. Pawlek and H. Rietesel,Erzmetall. 23 (1970) 486.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghali, E., Maruejouls, A. & Deroo, D. Electrodissolution de la millérite en milieu chlorhydrique. J Appl Electrochem 10, 709–719 (1980). https://doi.org/10.1007/BF00611274

Download citation