Journal of comparative physiology

, Volume 152, Issue 2, pp 241–249 | Cite as

Influence of the background for discriminating object motion from self-induced motion in toadsBufo bufo (L.)

  • H. Burghagen
  • J. -P. Ewert


Prey-catching behavior of common toads can be elicited by moving retinal images of appropriate size and configuration. In this evaluation, both stimulus and background features are taken into account. Moving retinal images may occur in different stimulus situations: (i) a small object traverses a part of the toad's visual field while the animal itself is sitting still; (ii) the toad approaches or passes a stationary small object during walking; (iii) the toad is passively moved in front of a small stationary object.

Toads respond in situations (i)-(iii) with prey-capture providing the retinal image (stimulus) is prey-like and the surrounding background is homogeneous. If a prey object is presented in front of a textured background, toads respond well in situation (i), whereas in situations (ii) and (iii) the probability of prey-catching responses is very low. It is concluded that, in the biotope, the textured background plays a decisive role in the discrimination between object motion and self-induced motion. The underlying neurophysiological mechanisms are discussed.


Visual Field Decisive Role Stationary Object Background Feature Retinal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum H (1959) Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Naturwissenschaften 46:435Google Scholar
  2. Borchers H-W (1982) Correlation between behavior patterns and single-unit responses for the optic tectum in the freely moving toad (Bufo bufo L.). In: Trappl R, Pask G, Ricciardi L (eds) Progress in cybernetics and system research, vol 9. Hemisphere, Washington New York LondonGoogle Scholar
  3. Borchers H-W, Burghagen H, Ewert J-P (1978) Key stimuli of prey for toads (Bufo bufo L.): Configuration and movement patterns. J Comp Physiol 128:189–192Google Scholar
  4. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toadBufo b. bufo L., Anura, Amphibia): Changes in responses to visual objects and effects of auditory stimuli. Behav Processes 3:125–136Google Scholar
  5. Dieringer N, Precht W (1982) Head and eye movements in the frog and their contribution to stabilization of gaze. Exp Brain Res 47:394–406Google Scholar
  6. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Vergl Physiol 61:41–70Google Scholar
  7. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L.). Pflügers Arch 308:225–243Google Scholar
  8. Ewert J-P (1971) Single unit response of the toad's (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102Google Scholar
  9. Ewert J-P (1983/84) Tectal mechanisms underlying prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New YorkGoogle Scholar
  10. Ewert J-P, Borchers H-W (1974) Antworten retinaler Ganglienzellen bei freibeweglichen Kröten. J Comp Physiol 92:117–130Google Scholar
  11. Ewert J-P, Härter H-A (1969) Der hemmende Einfluß gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte (Bufo bufo). Z Vergl Physiol 64:135–153Google Scholar
  12. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Exzitation im Beutefangverhalten der ErdkröteBufo bufo (L.). Z Vergl Physiol 68:84–110Google Scholar
  13. Ewert J-P, Burghagen H, Albrecht L, Kepper J (1982) Effects of background structure on the discrimination of configurational moving prey dummies by toadsBufo bufo (L.). J Comp Physiol 147:179–187Google Scholar
  14. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In:Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New YorkGoogle Scholar
  15. Frost BJ (1982) Mechanisms for discriminating object motion from self-induced motion in the pigeon. In:Ingle DJ, Goodale MA, Mansfield RW (eds) Analysis of visual behavior. MIT-Press, Cambridge (Massachusetts)Google Scholar
  16. Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 47:464–476Google Scholar
  17. Honigmann H (1944) The visual perception of movement by toads. Proc R Soc Lond 132:291–307Google Scholar
  18. Julesz B (1976) Experiments in the visual perception of texture. In:Held R, Richards W (eds) Recent progress in perception (Readings from Scientific American). Freeman, San FranciscoGoogle Scholar
  19. Kaess W, Kaess F (1960) Perception of apparent motion in the common toad. Science 132:953Google Scholar
  20. Lock A, Collett T (1979) A toad's devious approach to its prey: A study of some complex uses of depth vision. J Comp Physiol 131:179–189Google Scholar
  21. Manteuffel E, Plasa L, Sommer T, Wess O (1977) Involuntary eye movements in salamanders. Naturwissenschaften 64:533–534Google Scholar
  22. Schipperheyn JJ (1965) Contrast detection in frog retina. Acta Physiol Pharmacol Neerl 13:231–277Google Scholar
  23. Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frogRana temporaria. J Comp Physiol 141:139–152Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Burghagen
    • 1
  • J. -P. Ewert
    • 1
  1. 1.Arbeitsgruppe Neuroethologie und BiokybernetikUniversität Kassel (GhK)KasselFederal Republic of Germany

Personalised recommendations