Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass transfer at rotating finned cylinders

Abstract

Rates of mass transfer at rotating finned cylinders were studied by an electrochemical technique involving the measurement of the limiting current for the cathodic reduction of potassiun ferricyanide in a large excess of sodium hydroxide. The variables studied were fin height and Reynolds number. The ratio of the fin height to the cylinder diameter (e/d) ranged from 0·0185 to 0·075 while the Reynolds number ranged from 1047 to 10 470. Under these conditions, the mass transfer data could be correlated by the equationJ=0·714(Re)−0.39(e/d)0.2

This is a preview of subscription content, log in to check access.

Abbreviations

L L :

limiting current (A)

K :

mass transfer coefficient (cm s−1)

Z :

number of electrons involved in the reaction

C :

ferricyanide concentration (moles cm−3)

F :

Faraday's constant

A :

projected cathode area (cm2)

u :

dynamic viscosity (g cm−1 s−1)

ρ :

density (g cm−3)

V :

peripheral velocity at the rotating cylinder (cm s−1)

D :

diffusion coefficient of ferricyanide ion (cm2s−1)

d :

cylinder diameter (cm)

e :

fin height (cm)

J :

(St)(Sc)0.664 ColburnJ factor

(Sc):

u/(ρD) Schmidt number

(Re):

ρVd/u Reynolds number

(St):

K/V Stanton number

References

  1. [1]

    M. Èisenberg, C. W. Tobias and C. R. Wilke,J. Electrochem. Soc. 101 (1954) 306.

  2. [2]

    M. Eisenberg, C. W. Tobias and C. R. Wilke,Chem. Eng. Prog. Symp. Ser. 51 (1955) 1.

  3. [3]

    D. J. Robinson and D. R. Gabe,Trans. Inst. Met. Finish. 48 (1970) 35.

  4. [4]

    Idem, Electrochim. Acta 17 (1972) 1121.

  5. [5]

    Idem, ibid 17 (1972).

  6. [6]

    A. J. Arvia and J. S. W. Carrozza,ibid 7 (1962) 65.

  7. [7]

    A. J. Arvia, J. S. W. Carrozza and S. L. Marchiano,ibid 9 (1964) 1483.

  8. [8]

    M. S. Spencer, P. J. H. Carnell and W. J. Skinner,Ind. Eng. Chem. Process Dec. Develop. 8 (1969) 191.

  9. [9]

    P. R. Nadebaum and T. Z. Fahidy,Canad. J. Chem. Eng. 53 (1975) 259.

  10. [10]

    S. K. Stynes and J. E. Myers,A.I.Ch.E.J. 10 (1964) 437.

  11. [11]

    E. L. Jarrett and T. L. Sweeney,ibid 13 (1967) 797.

  12. [12]

    J. Fox,Internat. J. Heat Mass Transfer 8 (1965) 269.

  13. [13]

    R. A. Seban,ibid 8 (1965) 1353.

  14. [14]

    M. Avrami and J. B. Little,J. Appl. Phys. 13 (1942) 255.

  15. [15]

    K. A. Gardner,Trans. Amer. Soc. Mech. Engrs. 67 (1945) 621.

  16. [16]

    J. G. Knudsen and D. L. Katz,Chem. Eng. Progr,46 (1950) 490.

  17. [17]

    M. J. Harris and J. T. Wilson,J. Brit. Nucl. Energy Conf. 6 (1961) 330.

  18. [18]

    D. J. Maull and L. F. East,J. Fluid Mech. 16(4) (1963) 620.

  19. [19]

    R. A. Seband and J. Fox,International Developments in Heat Transfer. Proceedings 1961–62 Heat Transfer Conference Amer. Soc. Mech. Engrs., New York (1963) p. 426.

  20. [20]

    R. Kappesser, I. Corner and R. Greif,J. Electrochem. Soc. 118 (1971) 1957.

  21. [21]

    V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice-Hall Inc, New York (1962).

  22. [22]

    R. De Levie, ‘Advances in Electrochemistry and Electrochemical Engineering’ Interscience Publishers, New York (1967) Vol. 6.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sedahmed, G.H., Abdel Khalik, A., Abdallah, A.M. et al. Mass transfer at rotating finned cylinders. J Appl Electrochem 9, 563–566 (1979). https://doi.org/10.1007/BF00610942

Download citation

Keywords

  • Sodium
  • Physical Chemistry
  • Hydroxide
  • Mass Transfer
  • Reynolds Number