Journal of Comparative Physiology A

, Volume 156, Issue 2, pp 165–180 | Cite as

Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae)

III. Intensity dependence of the behavioural performance and relative importance of tympana and spiracles in directional hearing
  • Barbara Schmitz


Phonotaxis of receptive female field crickets (Gryllus campestris L.) towards a taped model of the species-specific calling song (Fig. 1) presented azimuthally at 12 different sound pressure levels, ranging from 39 to 106.5 dB, is investigated using a locomotion compensator. The orientational performance of the crickets is analysed in the intact state (1.), as well as after occlusion of both prothoracic spiracles (2.), both posterior tympana (3.), both prothoracic spiracles and both posterior tympana (4.), one posterior tympanum and one prothoracic spiracle at a time (5.).
  1. 1.

    In intact female crickets acoustic orientation on average starts at 44 dB. The orientational performance improves steadily up to 79.5 dB, deteriorates slightly at 86 and 91.5 dB and remarkably at 106.5 dB calling song intensity (Figs. 3, 4 and 11).

  2. 2.

    Following wax occlusion of both prothoracic spiracles (Figs. 5 and 6) behavioural threshold of phonotaxis is raised by on average 5 dB to 49 dB. The course of the intensity curve is similar to that evaluated for intact crickets, the orientational performance at a given intensity being merely slightly reduced (Fig. 11).

  3. 3.

    Occlusion of both posterior tympana (Figs. 7 and 8) does not abolish the capability of acoustic orientation. Compared to intact animals the behavioural threshold is only raised by on average 17.5 dB to 61.5 dB (Fig. 11). Orientational performance at suprathreshold intensities improves with increasing song intensity, but remains inferior to that of intact crickets unless a 106.5 dB calling song is presented.

  4. 4.

    Phonotaxis is even evident after occlusion of the posterior tympana and the prothoracic spiracles with wax (Figs. 9 and 10). This operation results in an effective attenuation of on average 30 dB, the behavioural threshold being raised to 74 dB (Fig. 11). At suprathreshold intensities orientational performance is further reduced compared to that of crickets after occlusion of the posterior tympana only.

  5. 5.

    Occlusion of a posterior tympanum and a prothoracic spiracle on opposite sides results in a stable course deviation of on average 49 ° towards the side of the intact posterior tympanum at 61.5 to 91.5 dB (Figs. 13, 14A and B). This demonstrates that the effect of an occluded posterior tympanum overrides that of an occluded prothoracic spiracle. Occlusion of these sound entrances on the same side results in strong turning tendencies towards the intact side, which increase with calling song intensity (Fig. 14C and D). Except in a single cricket's run performed at 106.5 dB, stable courses are no longer found (Fig. 15). Thus, phonotaxis is more strongly impaired than after occlusion of these sound entrances on opposite sides.



Sound Pressure Level Calling Song Field Cricket Intact Side Behavioural Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  2. Boyd P, Lewis B (1983) Peripheral auditory directionality in the cricket (Gryllus campestris L.,Teleogryllus oceanicus Le Guillou). J Comp Physiol 153:523–532Google Scholar
  3. Doherty JA, Huber F (1983) Temperature effects on acoustic communication in the cricketGryllus bimaculatus De Geer. Verh Dtsch Zool Ges 1983:188Google Scholar
  4. Eibl E (1978) Morphology of the sense organs in the proximal parts of the tibiae ofGryllus campestris L. andGryllus bimaculatus de Geer (Insecta, Ensifera). Zoomorphologie 89:185–205Google Scholar
  5. Hill KG, Boyan GS (1977) Sensitivity to frequency and direction of sound in the auditory system of crickets (Gryllidae). J Comp Physiol 121:79–97Google Scholar
  6. Huber F (1980) Zoologische Grundlagenforschung aus der Sicht eines Insektenbiologen. Verh Dtsch Zool Ges 1980:12–37Google Scholar
  7. Huber F (1983a) Implications of insect neuroethology for studies on vertebrates. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, London, pp 91–138Google Scholar
  8. Huber F (1983b) Der Weg vom Verhalten zur einzelnen Nervenzelle (Studien an Grillen). Akad Wiss Lit Abh Math Naturwiss Kl, Mainz 3:1–40Google Scholar
  9. Huber F (1983c) Neural correlates of orthopteran andCicada phonotaxis. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin Heidelberg New York Tokyo, pp 108–135Google Scholar
  10. Huber F, Kleindienst HU, Weber T, Thorson J (1984) Auditory behavior of the cricket. III. Tracking of male calling song by surgically and developmentally one-eared females, and the curious role of the anterior tympanum. J Comp Physiol A 155:725–738Google Scholar
  11. Kleindienst HU, Koch UT, Wohlers DW (1981) Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol 141:283–296Google Scholar
  12. Kleindienst HU, Wohlers DW, Larsen ON (1983) Tympanal membrane motion is necessary for hearing in crickets. J Comp Physiol 151:397–400Google Scholar
  13. Larsen ON (1981) Mechanical time resolution in some insect ears II. Impulse sound transmission in acoustic tracheal tubes. J Comp Physiol 143:297–304Google Scholar
  14. Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear. III. The cricket ear as a four-input system. J Comp Physiol 123:217–227Google Scholar
  15. Michel K (1974) Das Tympanalorgan vonGryllus bimaculatus DeGeer (Saltatoria, Gryllidae). Z Morphol Tiere 77:285–315Google Scholar
  16. Nocke H (1972) Physiological aspects of sound communication in crickets (Gryllus campestris L.). J Comp Physiol 80:141–162Google Scholar
  17. Paton JA, Capranica RR, Dragsten PR, Webb WW (1977) Physical basis for auditory frequency analysis in field crickets (Gryllidae). J Comp Physiol 119:221–240Google Scholar
  18. Pollack GS, Plourde N (1982) Directionality of acoustic orientation in flying crickets. J Comp Physiol 146:207–215Google Scholar
  19. Pollack GS, Huber F, Weber T (1984) Frequency and temporal pattern-dependent phonotaxis of crickets (Teleogryllus oceanicus) during tethered flight and compensated walking. J Comp Physiol A 154:13–26Google Scholar
  20. Popov AV, Shuvalov VF (1974) The spectrum, intensity, and direction of the calling song of the cricketGryllus campestris under natural conditions. J Evol Biochem Physiol 10:72–80Google Scholar
  21. Popov AV, Shuvalov VF, Svetlogorskaya ID, Markovich AM (1974) Acoustic behaviour and auditory system in insects. In: Schwartzkopff J (ed) Mechanoreception. Rhein-Westf Akad Wiss Abh 53:281–306Google Scholar
  22. Regen J (1923) Über die Orientierung des Weibchens vonLiogryllus campestris L. nach dem Stridulationsschall des Männchens. SB Akad Wiss Wien 132:81–88Google Scholar
  23. Schmitz B (1979) Untersuchungen zur Phonotaxis bei der Feldgrille (Gryllus campestris L.). Diplomarbeit, Universität KölnGoogle Scholar
  24. Schmitz B (1983) Analyse der akustischen Orientierung bei Grillenweibchen (Gryllus campestris L.). Dissertation, Universität KölnGoogle Scholar
  25. Schmitz B, Scharstein H (1981) Mechanismus der akustischen Orientierung bei Grillen-Weibchen (Gryllus campestris L.). Verh Dtsch Zool Ges 1981:267Google Scholar
  26. Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae). I. Mechanism of acoustic orientation in intact female crickets. J Comp Physiol 148:431–444Google Scholar
  27. Schmitz B, Scharstein H, Wendler G (1983) Phonotaxis inGryllus campestris L. (Orthoptera, Gryllidae). II. Acoustic orientation of female crickets after occlusion of single sound entrances. J Comp Physiol 152:257–264Google Scholar
  28. Schöne H (1980) Orientierung im Raum. Formen und Mechanismen der Lenkung des Verhaltens im Raum bei Tier und Mensch. Wissenschaftliche Verlags-GmbH, StuttgartGoogle Scholar
  29. Schumacher R (1978) Morphologisch-cytologischer Vergleich der Tympana verschiedener Orthopteren (Tettigonioidea, Grylloidea, Gryllotalpidae, Acridioidea). Zool Anz 201:323–340Google Scholar
  30. Schwabe J (1906) Beiträge zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20, 50:1–154Google Scholar
  31. Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket. II. Simplicity of calling song recognition inGryllus, and anomalous phonotaxis at abnormal carrier frequencies. J Comp Physiol 146:361–378Google Scholar
  32. Weber T (1984) Acoustical pattern recognition in crickets. In: Varjú, Schnitzler (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York Tokyo, pp 181–185Google Scholar
  33. Weber T, Thorson J, Huber F (1981) Auditory behavior of the cricket. I. Dynamics of compensated walking and discrimination paradigms on the Kramer treadmill. J Comp Physiol 141:215–232Google Scholar
  34. Wendler G, Dambach M, Schmitz B, Scharstein H (1980) Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.). Naturwissenschaften 67:99–100Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Barbara Schmitz
    • 1
  1. 1.Lehrstuhl TierphysiologieZoologisches Institut der Universität zu KölnKöln 41Federal Republic of Germany

Personalised recommendations