Advertisement

Journal of Comparative Physiology A

, Volume 156, Issue 3, pp 329–337 | Cite as

Centrophobism inDrosophila melanogaster

II. Physiological approach to search and search control
  • Karl G. Götz
  • Roland Biesinger
Article

Summary

Ether-induced avoidance of the center of an arena by a walking fly does not seem to be the outcome of at least two post-narcotic effects of ether vapor: the inactivation of acetylcholinesterase (Gage et al. 1979), and the inactivation of locomotion (van Dijken et al. 1977). The latter is actually due to a change in the action pattern of search and search control. The centrophobism arising either irreversibly in response to ether treatment, or reversibly in the course of accommodation to a new territory, increases the probability of brief stops at the outer boundary of the arena (Figs. 2–4).

Acquisition and maintenance of ‘orientedness’ by exploration of the available territory or evaluation of sensory aids to orientation appears indispensible if a fly wants to avoid the center of the arena. However, centrophobism can be explained without assumption of voluntary behavior. Persistence of direction during random walk in the arena is sufficient to divert locomotor activity from the center to the surround (Figs. 5, 6). The centrophobism found, so far, is equivalent to a ‘mean free path’ of about 4 cm in etherized flies, and about 2 cm in non-etherized flies (Table 1). Search control by variation of persistence in the track of a fly is compatible with results obtained in other insects.

Keywords

Ether Random Walk Arena Locomotor Activity Action Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M, Thompson JN jr (1978) I. The laboratory culture ofDrosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila 2a:1–109. Academic Press, London New York San FranciscoGoogle Scholar
  2. Benzer S (1971) From the gene to behavior. J Am Med Assoc 218:1015–1022Google Scholar
  3. Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly,Drosophila melanogaster. J Comp Physiol 148:471–481Google Scholar
  4. Connolly K (1966) Locomotor activity inDrosophila. II. Selection for active and inactive strains. Anim Behav 14:444–449Google Scholar
  5. Deery BJ, Parsons PA (1972) Ether resistance inDrosophila melanogaster. Theor Appl Genet 42:208–214Google Scholar
  6. Dijken FR van, Sambeek MJPW van, Scharloo W (1977) Influence of anaesthesia by carbon dioxide and ether on locomotor activity inDrosophila melanogaster. Experientia 33:1360–1361Google Scholar
  7. Ewing AW (1963) Attempts to select for spontaneous activity inDrosophila melanogaster. Anim Behav 11:369–378Google Scholar
  8. Fischbach KF (1979) Simultaneous and successive colour contrast expressed in ‘slow’ phototactic behavior of walkingDrosophila melanogaster. J Comp Physiol 130:161–171Google Scholar
  9. Gage PW, Hamill OP, Helden D van (1979) Dual effects of ether on end-plate currents. J Physiol 287:353–369Google Scholar
  10. Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1983:83–99Google Scholar
  11. Götz KG, Biesinger R (1985) Centrophobism inDrosophila melanogaster. I. Behavioral modification induced by ether. J Comp Physiol A 156:319–327Google Scholar
  12. Greenspan RJ, Finn JA jr, Hall JC (1980) Acetylcholinesterase mutants inDrosophila and their effects on the structure and function of the central nervous system. J Comp Neurol 189:741–774Google Scholar
  13. Grossfield J (1978) Non-sexual behavior ofDrosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology ofDrosophila 2b:1–126. Academic Press, London New York San FranciscoGoogle Scholar
  14. Hall JC, Greenspan RJ, Harris WA (1982) Genetic neurobiology, MIT Press, Cambridge LondonGoogle Scholar
  15. Ho MW, Tucker C, Keeley D, Saunders PT (1983) Effects of successive generations of ether treatment on penetrance and expression of the bithorax phenocopy inDrosophila melanogaster. J Exp Zool 225:357–368Google Scholar
  16. Hoffmann G (1983) Optimization of Brownian search strategies. Biol Cybern 49:21–31Google Scholar
  17. Ikeda K (1974) Patterned motor activities released by anesthetics. Proc Int Union Phys Sci 11:160Google Scholar
  18. Ikeda K, Kaplan WD (1974) Neurophysiological genetics inDrosophila melanogaster. Am Zool 14:1055–1066Google Scholar
  19. Kalmus H (1942) Narcosis and asphyxiation in some species and mutants ofDrosophila. J Exp Biol 19:238–254Google Scholar
  20. Kaplan WD (1972) Genetic and behavioral studies ofDrosophila neurological mutants. In: Kiger JA jr (ed) The biology of behavior. Oregon State University Press, OregonGoogle Scholar
  21. Kidd KK (1963) Es: ether sensitive mutant ofDrosophila melanogaster. Drosophila Inf Serv 37:49Google Scholar
  22. Lopatina NG, Marshin VG, Nikitina JA, Ponomarenko VV, Smirnova GP, Sogrin VV, Chesnokova EG (1980) Rate of ether narcosis in relation to insect behavior: a neurophysiological trait. Genetika 16:309–317 (in Russian)Google Scholar
  23. Montijn C, Dijken FR van, Boer MH den, Scharloo W (1974) Apparatus for a measurement of locomotor activity inDrosophila. Drosophila Inf Serv 51:151Google Scholar
  24. Moorhouse JE, Fosbrooke JHM, Kennedy JS (1978) ‘Paradoxical driving’ of walking activity in locusts. J Exp Biol 72:1–16Google Scholar
  25. Ogaki M, Nakashima-Tanaka E, Murakami S (1967) Inheritance of ether resistance inDrosophila melanogaster. Jpn J Genet 42:387–394Google Scholar
  26. Ogaki M, Nabata H, Nakashima-Tanaka E, Gamo S (1980) Ether sensitivity at embryonic stage ofDrosophila melanogaster. Drosophila Inf Serv 55:117Google Scholar
  27. Parkash O (1971) The behavioral changes produced by thymidine-induced temperature-sensitive lethal factors inDrosophila melanogaster. Drosophila Inf Serv 46:67Google Scholar
  28. Peterson PA (1947) A sex-linked character expressed as ethersensitive (es). Drosophila Inf Serv 21:88Google Scholar
  29. Powell JR, Dobzhansky T (1976) How far do flies fly? Am Sci 64:179–185Google Scholar
  30. Rasmuson B (1955) A nucleo-cytoplasmic anomaly inDrosophila melanogaster causing increased sensitivity to anaesthetics. Hereditas 41:147–208Google Scholar
  31. Richards CD (1976) Anaesthetic mechanisms. Nature 262:534Google Scholar
  32. Ringo JM (1971) The effects of anaesthetization upon survival and behavior ofDrosophila grimshavi. Drosophila Inf Serv 47:118–119Google Scholar
  33. Sewell DF (1979) Effect of temperature and density variation on locomotor activity inDrosophila melanogaster: a comparison of behavioural measures. Anim Behav 27:312–313Google Scholar
  34. Skrzipek KH, Kröner B, Hager H (1979) Laboratory studies on aggression inDrosophila melanogaster. Z Tierpsychol 49:87–103Google Scholar
  35. Syrjämäki J (1962) Humidity perception inDrosophila melanogaster. Ann Zool Soc Vanamo 23:1–72Google Scholar
  36. Venard R, Pichon Y (1981) Étude électro-antennographique de réponse périphérique de l'antenne deDrosophila melanogaster à des stimulations odorantes. CR Acad Sci Paris 293:839–842Google Scholar
  37. Watson JE, Scheinberg E (1965) The effects of anesthetization inDrosophila melanogaster. Genetics 52:483Google Scholar
  38. Watson JE, Scheinberg E, Dittmar LA (1965) Effects of ether on fitness traits. Drosophila Inf Serv 40:64Google Scholar
  39. Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6C, pp 287–616)Google Scholar
  40. Wigglesworth VB (1941) The sensory physiology of the human lousePediculus humanus corporis De Geer (Anoplura). Parasitol 33:67–109Google Scholar
  41. Wijsman EM (1981) The effect of ether on mating behavior inDrosophila simulans y w. Drosophila Inf Serv 56:158Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Karl G. Götz
    • 1
  • Roland Biesinger
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingen 1Federal Republic of Germany

Personalised recommendations