Journal of Comparative Physiology A

, Volume 156, Issue 1, pp 25–34 | Cite as

Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement

II.Optomotor blindH31 andlobula plate-lessN684, visual mutants
  • Isabelle Bülthoff
  • Erich Büchner


The pattern of visually induced local metabolic activity in the optic lobes of two structural mutants ofDrosophila melanogaster is compared with the corresponding wildtype pattern which has been reported in Part I of this work (Buchner et al. 1984b). Individualoptomotor-blindH31 (omb) flies lacking normal giant HS-neurons were tested behaviourally, and those with strongly reduced responses to visual movement were processed for 3H-deoxyglucose autoradiography. The distribution of metabolic activity in the optic lobes ofomb apparently does not differ substantially from that found in wildtype. In the mutantlobula plate-lessN684 (lop) the small rudiment of the lobula plate which lacks many small-field input neurons does not show any stimulus-specific labelling. The data provide further support for the hypothesis that small-field input neurons to the lobula plate are the cellular substrate of the direction-specific labelling inDrosophila (see Buchner et al. 1984b).


Metabolic Activity Nervous Activity Visual Movement Deoxyglucose Input Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





optomotor blindH31


lobula plate-lessN684




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blondeau J, Heisenberg M (1982) The 3-dimensional optomotor torque system ofDrosophila melanogaster. Studies on wildtype and the mutant optomotor-blindH31. J Comp Physiol 145:321–329Google Scholar
  2. Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101Google Scholar
  3. Buchner E, Buchner S (1980) Mapping stimulus-induced nervous activity in small brains by3H-2-deoxyglucose. Cell Tissue Res 211:51–64Google Scholar
  4. Buchner E, Buchner S (1983) Anatomical localization of functional activity in insects by3H-2-deoxy-D-glucose. In: Strausfeld NJ (ed) Functional neuroanatomy. Springer, Berlin Heidelberg New York Tokyo, pp 225–238Google Scholar
  5. Buchner E, Buchner S, Bülthoff H (1984a) Identification of3H-deoxyglucose-labelled interneurons in the fly from serial autoradiographs. Brain Res 305:384–388Google Scholar
  6. Buchner E, Buchner S, Bülthoff I (1984b) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol A 155:471–483Google Scholar
  7. Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly,Drosophila melanogaster. J Comp Physiol 148:471–481Google Scholar
  8. Eckert H, Meller K (1981) Synaptic structures of identified, motion-sensitive interneurones in the brain of the fly,Phaenicia. Ver Dtsch Zool Ges 1981:179Google Scholar
  9. Fischbach KF (1983) Neurogenetik am Beispiel des visuellen Systems vonDrosophila melanogaster. Habilitationsschrift, Universität WürzburgGoogle Scholar
  10. Fischbach KF, Heisenberg M (1981) Structural brain mutant ofDrosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor response. Proc Natl Acad Sci Washington 78:1105–1109Google Scholar
  11. Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1983:83–89Google Scholar
  12. Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitflyDrosophila. J Comp Physiol 85:235–266Google Scholar
  13. Hall JC (1982) Genetics of the nervous system inDrosophila. Q Rev Biophys 15:223–479Google Scholar
  14. Hall JC, Greenspan RJ (1979) Genetic analysis ofDrosophila neurobiology. Annu Rev Genet 13:129–195Google Scholar
  15. Hausen K (1984) The lobula-complex of the fly. Structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 523–559Google Scholar
  16. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior ofDrosophila melanogaster. J Comp Physiol 117:127–162Google Scholar
  17. Heisenberg M, Götz KG (1975) The use of mutations for the partial degradation of vision inDrosophila melanogaster. J Comp Physiol 98:217–241Google Scholar
  18. Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin Heidelberg New York Tokyo (in press)Google Scholar
  19. Heisenberg M, Wonneberger R, Wolf R (1978)Optomotor-blind H31 — aDrosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296Google Scholar
  20. Heisenberg M, Blondeau J, Fischbach KF, Wolf R (1981) Structural brain mutants and the visual system ofDrosophila melanogaster. A group report, Abstracts of Taniguchi Symposium, KyotoGoogle Scholar
  21. Hengstenberg R (1973) The effect of pattern movement on the impulse activity of the cervical connective ofDrosophila melanogaster. Z Naturforsch 28c:593–596Google Scholar
  22. Paschma R (1982) Strukturelle und funktioneile Defekte derDrosophila Mutantelobula plate-lessN684. Diplomarbeit, Universität WürzburgGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Isabelle Bülthoff
    • 1
  • Erich Büchner
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations