Journal of Comparative Physiology A

, Volume 155, Issue 3, pp 289–296 | Cite as

The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area

  • Thomas Labhart
  • Beat Hodel
  • Isabel Valenzuela


  1. 1.

    The spectral, angular and polarization sensitivities of photoreceptors in the cricket's compound eye are measured by intracellular electrophysiology. The physiological characteristics of receptors in the anatomically specialized dorsal rim area (DRA) are compared with those of receptors in the adjacent dorsal area (DA) of the eye.

  2. 2.

    The study of (1) the direction of the optical axis of each cell tested (with respect to natural head position; Fig. 2), (2) the retinal position of intracellularly stained cells and (3) the shapes of the visual fields (see below) suggests that the DRA contains blue-receptors only(λmax=435 nm), where-as the DA is composed of green-(λmax=510 nm) and UV-receptors (λmax ca. 340 nm) (Fig. 1).

  3. 3.

    The visual fields of DA units exhibit the usual, narrow shapes with an average acceptance angle (Δρp) of 6°. In contrast, the visual fields of DRA receptors are much wider due to absence of screening pigment and corneal facets in this eye region: Δρ varies between 10° and 35°, but in many cells the angular sensitivity function is too broad to allow determination of Δρ (Figs. 3, 4).

  4. 4.

    Polarization sensitivity (PS) in blue-cells (DRA) is much higher (\(\overline {{\text{PS}}} = 8.3\)) than in green-cells (\(\overline {{\text{PS}}} = 2.6\)), although there is no retinular twist in both eye regions. PS values of two UV-cells examined were 2.9 and 4.2 (Fig. 5).

  5. 5.

    The possible role of the cricket's DRA for polarization vision is discussed by comparing the physiological characteristics of the cricket's DRA with those of the honey bee's DRA and in the light of recent behavioral experiments.




dorsal rim area


dorsal area


polarization sensitivity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aepli F, Labhart T, Meyer EP (1984) Structural specializations of the cornea and the retina at the dorsal rim of the compound eyes in hymenopteran insects. J. Comp Physiol A (in press)Google Scholar
  2. Autrum H, Zwehl V von (1964) Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z Vergl Physiol 48:357–384Google Scholar
  3. Bertrand D (1974) Etude des propriétés électrophysiologiques des cellules pigmentaires de la rétine du faux bourdon. Thèse No. 1650, Université de GenèveGoogle Scholar
  4. Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jb Physiol 83:502–525Google Scholar
  5. Burkhardt D, Streck P (1965) Das Sehfeld einzelner Sehzellen: Eine Richtigstellung. Z Vergl Physiol 51:151–152Google Scholar
  6. Geiser FX, Labhart T (1982) Electrophysiologische Unter-suchungen an der Ocellen-Retina der Honigbiene (Apis mellifera). Verh Dtsch Zool Ges 1982:307Google Scholar
  7. Goldsmith TH (1960) The nature of the retinal action potential and the spectral sensitivities of ultraviolet and green systems of the compound eye of the worker honeybee. J Gen Physiol 43:775–799Google Scholar
  8. Gribakin FG, Vishnevskaya TM, Polyanovskii AD (1980) Polarization and spectral sensitivity of single photoreceptors of the domestic cricket. Neurophysiology 5:358–365Google Scholar
  9. Heiversen O von, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94:33–47Google Scholar
  10. Hodel B, Labhart T (1983) Intracellular electrophysiological recordings from the photoreceptors in the compound eye of the cricketGryllus campestris. Experientia 39:634Google Scholar
  11. Klopffeisch K (1973) Ethologische Untersuchungen an der FeldgrilleGryllus campestris an natürlichen Standorten. Staatsarbeit Universität KölnGoogle Scholar
  12. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30Google Scholar
  13. Laughlin SB (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247Google Scholar
  14. Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth,Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347Google Scholar
  15. Menzel R, Blakers M (1976) Colour receptors in the bee eye -morphology and spectral sensitivity. J Comp Physiol 108:11–33Google Scholar
  16. Menzel R, Snyder AW (1974) Polarized light detection in the bee,Apis mellifera. J Comp Physiol 88:247–270Google Scholar
  17. Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee's compound eye. Cell Tissue Res 216:491–501Google Scholar
  18. Popov AV (1975) Acoustic behavior and migrations of field cricketsGryllus campestris L. Zool Zh 54:1803–1809Google Scholar
  19. Rossel S, Wehner R (1984) Celestial orientation in bees: the use of spectral cues. J Comp Physiol A (in press)Google Scholar
  20. Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene,Apis mellifera (Hymenoptera). Dissertation Universtität ZürichGoogle Scholar
  21. Vishnevskaya TM, Mazokhin-Porshnyakov GA (1969) Electrical and spectral properties of the visual cells of the grasshopper (Tettigonia) and the cricket (Gryllus). Biofizika 14:151–157Google Scholar
  22. Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera: Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125Google Scholar
  23. Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsblatt Naturforsch Ges ZürichGoogle Scholar
  24. Wehner R, Bernard GD (1980) Intracellular optical physiology of the bee's eye: II. Polarizational sensitivity. J Comp Physiol 137:205–214Google Scholar
  25. Wehner R, Meyer EP (1981) Rhabdomeric twist in bees — Artefact or in vivo structure? J Comp Physiol 142:1–17Google Scholar
  26. Wehner R, Bernard GD, Geiger E (1975) Twisted and nontwisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245Google Scholar
  27. Wunderer H, Smola U (1982) Fine structure of ommatidia at the dorsal eye margin ofCalliphora erythrocephala Meigen (Diptera: Calliphoridae): An eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Thomas Labhart
    • 1
  • Beat Hodel
    • 1
  • Isabel Valenzuela
    • 1
  1. 1.Zoologisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations