Advertisement

Journal of comparative physiology

, Volume 134, Issue 2, pp 119–130 | Cite as

Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods

I. Comparative data
  • Ulrich Thurm
  • Günter Wessel
Article

Summary

Comparative measurements have been made of the transepidermal voltage recorded between the haemolymph space and the outer surface of the cuticle (a) at the site of sensilla and (b) at epidermal sites free of sensilla for representatives of various orders of insects and for terrestrial species of Crustacea and Arachnidae.

  1. 1.

    The transepidermal voltage at the site of sensilla has been found between 20 and 80 mV, with the cuticular side being positive, in contrast to about 0 mV at epidermal regions free of sensilla (Donnan-type voltages within the cuticle excluded by sufficiently high electrolyte concentrations).

     
  1. a.

    The locally increased voltage is present at sensilla of all groups of hemi- and holometabolous insects and also of a representative of Crustacea (wood-louseArmadillidium) tested, however, not of spiders.

     
  2. b.

    The locally increased voltage is present at all insect sensilla for all modalities of adequate stimuli tested (Table 1).

     
  3. 2.

    Anoxia or cyanide reduce the local voltage at sensilla to the voltage found remote from sensilla. During anoxia the main voltage component at insect sensilla decays within 1 or a few minutes; it is re-established within some 10s following resupply of O2 after some minutes of anoxia. A smaller component at insect sensilla and the total voltage at isopod sensilla decays only irreversibly within 1/2 to 1 h of anoxia.

     
  4. 3.

    The amplitude of the acutely O2-dependent voltage is strongly reduced during a few days before ecdysis (molting).

     

On the basis of the subsequent paper (Küppers and Thurm, 1979) the acutely O2-dependent voltage at insect sensilla is interpreted as reflecting local electrogenic ion transport activity.

Keywords

Cyanide Electrolyte Concentration Comparative Measurement Small Component Terrestrial Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

TEP

transepithelial potential difference

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner, H.: Insektensensillen: Bau- und Funktionsprinzip. Verb. Dtsch. Zool. Ges.70, 139 (1977)Google Scholar
  2. Anderson, E., Harvey, W.R.: Active transport by theCecropia midgut. II. Fine structure of the midgut epithelium. J. Cell Biol.31, 107–134 (1966)Google Scholar
  3. Barth, F.G.: Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Aranea). Z. Zellforsch.112, 212–246 (1971)Google Scholar
  4. Beis, I., Newsholme, E.A.: The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J.152, 23–32 (1975)Google Scholar
  5. Blaney, W.M., Chapman, R.F.: The fine structure of the terminal sensilla on the maxillary palps ofSchistocerca gregaria (Forskäl) (Orthoptera, Acrididae). Z. Zellforsch.99, 74–97 (1969)Google Scholar
  6. Boeckh, J., Kaissling, K.-E., Schneider, D.: Insect olfactory receptors. Cold Spring Harbor Symp. Quant. Biol.30, 263–280 (1965)Google Scholar
  7. Erler, G., Thurm, U.: Die Impulsantwort epithelialer Rezeptoren in Abhängigkeit von der transepithelialen Potentialdifferenz. Verh. Dtsch. Zool. Ges.71, 279 (1978)Google Scholar
  8. Erler, G., Thurm, U.: Dendritic impulse initiation in an epithelial sensory neuron, (in prep.)Google Scholar
  9. Esslen, J., Kaissling, K.-E.: Zahl und Verteilung antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphologie83, 227–251 (1976)Google Scholar
  10. Evans, D.R., Mellon jr. D.: Electrophysiological studies of a water receptor associated with the taste sensilla of the blowfly. J. Gen. Physiol.45, 487–500 (1962)Google Scholar
  11. Foelix, R.F.: Chemosensitive hairs in spiders. J. Morphol.132, 313–334 (1970)Google Scholar
  12. Foelix, R.F., Chu-Wang, I.-W.: The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell5, 461–478 (1973)Google Scholar
  13. Gaffal, K.P., Theiß, J.: The tibial thread-hairs ofAcheta domesticus L. (Saltatoria, Gryllidae). Zoomorphologie90, 41–51 (1978)Google Scholar
  14. Gnatzy, W., Schmidt, K.: Die Feinstruktur der Sinneshaare auf den Cerci vonGryllus bimaculatus Deg. (Saltatoria, Gryllidae) I. Faden- und Keulenhaare. Z. Zellforsch.122, 190–209 (1971)Google Scholar
  15. Harvey, W.R., Nedergaard, S.: Sodium-independent active transport of potassium in the isolated midgut of theCecropia silkworm. Proc. Natl. Acad. Sci. USA51, 757–765 (1964)Google Scholar
  16. Kaissling, K.-E.: Insect olfaction. In: Handbook of sensory physiology. Vol. IV/1. Beidler L.M. (ed.), pp. 351–431 Berlin, Heidelberg, New York: Springer 1971Google Scholar
  17. Keil, T.: Die Makrochaeten auf dem Thorax vonCalliphora vicina Robineau-Desvoidy (Calliphorida, Diptera). Feinstruktur und Morphogenese eines epidermalen Insekten-Mechanorezeptors. Zoomorphologie90, 151–180 (1978)Google Scholar
  18. Küppers, J.: Measurements on the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. In: Mechanoreception. Schwartzkopff J. (ed.), pp. 387–397. Opladen: Abh. Rhein.-Westf. Akad. Wiss. 1974Google Scholar
  19. Küppers, J., Thurm, U.: Active ion transport by a sensory epithelium. I. Transepithelial short circuit current, potential difference, and their dependence on metabolism. J. Comp. Physiol.134, 131–136 (1979)Google Scholar
  20. Levinson, H.Z., Kaissling, K.-E., Levinson, A.R.: Olfaction and cyanide sensitivity in the six-spot burnet mothZygaena filipendulae and the silkmothBombyx mori. J. Comp. Physiol.86, 209–214 (1973)Google Scholar
  21. Nicklaus, R., Lundquist, P.-G., Wersäll, J.: Elektronenmikroskopie am sensorischen Apparat der Fadenhaare auf den Cerci der SchabePeriplaneta americana. Z. Vergl. Physiol.56, 412–415 (1967)Google Scholar
  22. Plagemann, A., Küppers, J., Thurm, U.: Elektroosmose: Grundlage aktiver Aufnahme atmosphärischen Wassers beiLepisma. Verh. Dtsch. Zool. Ges.71, 298 (1978)Google Scholar
  23. Rick, R., Barth, F.G., Von Pawel, A.: X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J. Comp. Physiol.110, 89–95 (1976)Google Scholar
  24. Risler, H.: Die Sinnesorgane der Antennula vonPorcellio scaber Latr. (Crustacea, Isopoda). Zool. Jb. Anat.98, 29–52 (1977)Google Scholar
  25. Schmidt, K., Gnatzy, W.: Die Feinstruktur der Sinneshaare auf den Cerci vonGryllus bimaculatus Deg. (Saltatoria, Gryllidae). III. Die kurzen Borstenhaare. Z. Zellforsch.126, 206–222 (1972)Google Scholar
  26. Schneider, D., Kaissling, K.-E.: Der Bau der Antenne des SeidenspinnersBombyx mori L. II. Sensillen, cuticuläre Bildungen und innerer Bau. Zool. Jb. Anat.72, 223–250 (1957)Google Scholar
  27. Sellick, P.M., Johnstone, B.M.: Production and role of inner ear fluid. Prog. Neurobiol.5, 337–362 (1975)Google Scholar
  28. Smith, D.S.: The fine structure of haltere sensilla in the blowfly,Calliphora erythrocephala (Meig.), with scanning electron microscopic observations on the haltere surface. Tissue Cell1, 443–484 (1969)Google Scholar
  29. Thurm, U.: Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeld-Sensillen von Bienen. Z. Vergl. Physiol.46, 351–382 (1963)Google Scholar
  30. Thurm, U.: Untersuchungen zur funktioneilen Organisation sensorischer Zellverbände. Verh. Dtsch. Zool. Ges.64, 79–88 (1970)Google Scholar
  31. Thurm, U.: The generation of receptor potentials in epithelial receptors. In: Olfaction and taste IV. Schneider, D. (ed.), pp. 95–101. Stuttgart: Wissenschaftl. Verlagsgesellsch. 1972Google Scholar
  32. Thurm, U.: Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Mechanoreception. Schwartzkopff, J. (ed.), pp. 355–385. Opladen: Abh. Rhein.-Westf. Akad. Wiss. 1974Google Scholar
  33. Thurm, U.: Sensorische Transduktionsprozesse. In: Biophysik — Ein Lehrbuch. Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (eds.). Berlin, Heidelberg, New York: 1977Google Scholar
  34. Thurm, U., Gödde, J.: Effects of transepithelial voltage on sensitivity of epidermal mechanoreceptors in a fly. (in prep.)Google Scholar
  35. Thurm, U., Keil, Th., Küppers, J.: The epithelial organization of insect sensilla. (in prep.)Google Scholar
  36. Valentine, J.M.: The olfactory sense of the adult mealworm beetleTenebrio molitor (Linn.). J. Exp. Biol.58, 165–228 (1931)Google Scholar
  37. Wolbarsht, M.L.: Electrical activity in the chemoreceptors of the blowfly. II. Responses to electrical stimulation. J. Gen. Physiol.42, 413–428 (1958)Google Scholar
  38. Wood, J.L., Farrand, P.S., Harvey, W.R.: Active transport of potassium by theCecropia midgut. VI. Microelectrode potential profile. J. Exp. Biol.50, 169–178 (1969)Google Scholar
  39. Zerahn, K.: Active transport of the alkali metals by isolated midgut ofHyalophora cecropia. Phil. Trans. R. Soc. Lond. (Biol.)262, 315–321 (1971)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ulrich Thurm
    • 1
  • Günter Wessel
    • 1
  1. 1.Lehrstuhl für NeurophysiologieZoologisches Institut der Westfälischen Wilhelms-UniversitätMünsterFederal Republic of Germany

Personalised recommendations