Advertisement

Journal of comparative physiology

, Volume 134, Issue 2, pp 95–107 | Cite as

Spectral sensitivities of retinular cells measured in intact, living flies by an optical method

  • Gary D. Bernard
  • Doekele G. Stavenga
Article

Summary

The spectral sensitivity of the peripheral retinular cells R1–6 in nine species of intact flies was determined using non-invasive, optical measurements of the increase in reflectance that accompanies the pupillary response. Our technique is to chronically illuminate a localized region of the eye with a long wavelength beam, adjusted to bring pupillary scattering above threshold, then, after stabilization, to stimulate with monochromatic flashes. A criterion increase in scattering is achieved at each wavelength by adjusting flash intensity. Univariance of the pupillary response is demonstrated by Fig. 3.

Action spectra measured with this optical method are essentially the same as the published spectral sensitivity functions measured with intracellular electrophysiological methods (Fig. 4 forCalliphora, Fig. 5 forDrosophila, Fig. 7 forEristalis, and Fig. 8 forMusca). This holds for both the long wavelength peak and the high sensitivity in the UV as was consistently found in all investigated fly species.

Spectral sensitivity functions for R1–6 of hover flies (family Syrphidae) are quite different in different regions of the same eye. There can also be substantial differences between the two sexes of the same species. The ventral pole of the eye of femaleAllograpta (Fig. 10) contains receptors with a major peak at 450 nm, similar to those ofEristalis. However, the dorsal pole of the same eye contains receptors with a major peak at 495 nm, similar to those ofCalliphom. Both dorsal and ventral regions of the maleToxomerus eye, and the ventral region of the female eye, contain only the 450 nm type of R1-6 (see Fig. 12). However, the dorsal region of the female eye also contains another spectral type of receptor that is maximally sensitive at long wavelength. Eyes of both sexes ofAllograpta (Figs. 10 and 11) contain a mixture of spectral types of receptors R1-6.

Keywords

Major Peak Optical Method Spectral Sensitivity Spectral Type Pupillary Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, G.D.: Evidence for visual function of corneal interference filters. J. Insect Physiol.177, 2287–2300 (1971)Google Scholar
  2. Bernard, G.D.: Spectral sensitivity of the dark-adapted butterfly pupil. Invest. Ophthalmol. Visual Sci.15, Suppl., 17 (1976a)Google Scholar
  3. Bernard, G.D.: Non-invasive optical probe of the invertebrate eye. J. Opt. Soc. Am.66, 1120 (1976b)Google Scholar
  4. Bernard, G.D.: Discovery of red-receptors in butterfly retinas. Invest. Ophthalmol. Visual Sci.16, Suppl. 61 (1977a)Google Scholar
  5. Bernard, G.D.: Non-invasive microspectrophotometry of butterfly photoreceptors. J. Opt. Soc. Am.67, 1362 (1977b)Google Scholar
  6. Bernard, G.D.: Red-absorbing visual pigment of butterflies. Science203, 1125–1127 (1979)Google Scholar
  7. Bernard, G.D., Miller, W.H.: Interference filters in the corneas of Diptera. Invest. Ophthalmol. Visual Sci.7, 416–434 (1968)Google Scholar
  8. Bernard, G.D., Stavenga, D.G.: The pupillary response of flies as an optical probe for determining spectral sensitivities of retinular cells in completely intact animals. Biol. Bull.153, 415 (1977)Google Scholar
  9. Bernard, G.D., Stavenga, D.G.: Spectral sensitivities of retinular cells measured in intact, living bumblebees by an optical method. Naturwissenschaften65, 442–443 (1978)Google Scholar
  10. Bishop, L.G.: An ultraviolet photoreceptor in a dipteran compound eye. J. Comp. Physiol.91, 267–275 (1974)Google Scholar
  11. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. Exp. Biol.16, 86–109 (1962)Google Scholar
  12. Dörrscheidt-Käfer, M.: Die Empfindlichkeit einzelner Photorezeptoren in Komplexauge vonCalliphora erythrocephala. J. Comp. Physiol.81, 309–340 (1972)Google Scholar
  13. Eckert, H.: Die spektrale Empfindlichkeit des Komplexauges vonMusca. Kybernetik9, 145–156 (1971)Google Scholar
  14. Franceschini, N.: Sur le traitement optique de l'information visuelle dans l'oeil à facettes de la drosophile. Thesis, Grenoble, (1972a)Google Scholar
  15. Franceschini, N.: Pupil and pseudopupil in the compound eye ofDrosophila. In: Information processing in the visual systems of arthropods. Wehner, R. (ed.), pp. 75–82. Berlin, Heidelberg, New York: Springer 1972bGoogle Scholar
  16. Franceschini, N.: Sampling of the visual enviroment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 98–125. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  17. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l'oeil composé deDrosophila. Kybernetik8, 1–13 (1971a)Google Scholar
  18. Franceschini, N., Kirschfeld, K.: Les phénomènes de pseudopupille dans l'oeil composé deDrosophila. Kybernetik9, 159–182 (1971b)Google Scholar
  19. Franceschini, N., Kirschfeld, K.: Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères. Biol. Cybernetics21, 181–203 (1976)Google Scholar
  20. Goldsmith, T.H., Bernard, G.D.: The visual system of insects. In: The physiology of insects, second edition, Vol. II. Rockstein, M. (ed.), pp. 165–272. New York: Academic Press 1974Google Scholar
  21. Hamdorf, K.: The physiology of invertebrate visual pigments. In: Handbook of sensory physiology, Vol VII/6A. Autrum, H. (ed.), pp. 145–224. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  22. Hardie, R.C.: Electrophysiological analysis of fly retina. I: Comparative properties of R1–6 and R7 and 8. J. Comp. Physiol.129, 19–33 (1979)Google Scholar
  23. Harris, W.A., Stark, W.S., Walker, J.A.: Genetic dissection of the photoreceptor system in the compound eye ofDrosophila. J. Physiol.256, 415–439 (1976)Google Scholar
  24. Horridge, G.A., Mimura, K.: Fly photoreceptors. I: Physical separation of two visual pigments inCalliphora retinula cells 1–6. Proc. R. Soc. Lond. (Biol.)190, 211–224 (1975)Google Scholar
  25. Horridge, G.A., Mimura, K., Tsukahara, Y.: Fly photoreceptors. II. Spectral and polarized light sensitivity in the drone flyEristalis. Proc. R. Soc. Lond. (Biol.)190, 225–237 (1975)Google Scholar
  26. Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges vonMusca. Kybernetik6, 13–22 (1969)Google Scholar
  27. Kirschfeld, K., Franceschini, N., Minke, B.: Evidence for a sensitizing pigment in fly photoreceptors. Nature269, 386–390 (1977)Google Scholar
  28. McCann, G.D., Arnett, D.W.: Spectral and polarization sensitivity of the dipteran visual system. J. Gen. Physiol.59, 534–558 (1972)Google Scholar
  29. Miller, W.H.: Ocular optical filtering. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, H. (ed.), pp. 69–143. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  30. Ostroy, S.E., Wilson, M., Pak, W.L.:Drosophila rhodopsin: Photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem. Biophys. Res. Commun.59, 960–966 (1974)Google Scholar
  31. Rodieck, R.W.: The vertebrate retina. San Francisco: W.H. Freeman 1973Google Scholar
  32. Stark, W.S., Frayer, K.L., Jonson, M.A.: Photopigment and receptor properties inDrosophila compound eye and ocellar receptors. Biophys. Struct. Mech.5, 197–209 (1979)Google Scholar
  33. Stavenga, D.G.: Optical qualities of the fly eye — an approach from the side of geometrical, physical and waveguide optics. In: Photoreceptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 126–144. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  34. Stavenga, D.G.: Fly visual pigments. Differences in visual pigments of blowfly and dronefly peripheral retinula cells. J. Comp. Physiol.111, 137–152 (1976)Google Scholar
  35. Stavenga, D.G.: Pseudopupils of compound eyes. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, H. (ed.), pp. 357–439. Berlin, Heidelberg, New York: Springer 1979aGoogle Scholar
  36. Stavenga, D.G.: Visual pigment processes and prolonged pupillary responses in insect photoreceptor cells. Biophys. Struct. Mech.5, 175–185 (1979b)Google Scholar
  37. Stavenga, D.G., Kuiper, J.W.: Insect pupil mechanisms. I. On the pigment migration in the retinula cells of Hymenoptera. J. Comp. Physiol.113, 55–72 (1977)Google Scholar
  38. Stavenga, D.G., Zantema, A., Kuiper, J.W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments. Langer, H. (ed.), pp. 175–180. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  39. Stavenga, D.G., Numan, J.A.J., Tinbergen, J., Kuiper, J.W.: Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J. Comp. Physiol.113, 73–93 (1977)Google Scholar
  40. Tsukahara, Y., Horridge, G.A.: Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells. J. Comp. Physiol.114, 233–251 (1977)Google Scholar
  41. Wu, C.-F., Pak, W.L.: Quantal basis of photoreceptor spectral sensitivity ofDrosophila melanogaster. J. Gen. Physiol.66, 149–168 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Gary D. Bernard
    • 1
    • 2
    • 3
  • Doekele G. Stavenga
    • 1
    • 2
    • 3
  1. 1.Department of Ophthalmology and Visual ScienceYale UniversityNew HavenUSA
  2. 2.Biophysical DepartmentRijksuniversiteit GroningenGroningenThe Netherlands
  3. 3.The Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations