Journal of Comparative Physiology A

, Volume 164, Issue 4, pp 423–431 | Cite as

Magnetic field effects on activity and ageing in honeybees

  • Hermann Martin
  • Herbert Korall
  • Barbara Förster
Article

Summary

Artificial magnetic fields (MF) influence physiological processes in bees.
  1. 1.

    An inhomogeneous, static magnetic field (IMF) reduces the flying activity of bees and increases their life span by more than 60%.

     
  2. 2.

    The content of the ageing pigment lipofuscin in brain and, to a lesser extent, in thorax muscles increases with the physiological age. The content of lipofuscin of the thorax muscle is only 1/5 that of the brain.

     
  3. 3.

    Despite their increased chronological age (60–74%) brain lipofuscin of bees under conditions of an inhomogeneous, static magnetic field is slightly reduced compared with bees in natural earth's magnetic field (EMF) conditions. No effects could be registered in the muscle lipofuscin of the thorax.

     
  4. 4.

    There was no correlation between the content of lipofuscin and the chronological age.

     
  5. 5.

    Flying activity is also reduced by horizontal magnetic fields (0.40–1.45 Oe).

     
  6. 6.

    Dance tempo is reduced in compensated EMF and amplified static magnetic fields (0.84 Oe). Dance tempo is drastically reduced if compensation of the EMF is followed by application of a 5 Hz magnetic field with 1.04 Oepp, directed E-W.

     

Abbreviations, symbols and terms

A

activity of bees, i.e. visits per bee and day

COMP

compensated earth's magnetic field

EMF

earth's magnetic field

IMF

inhomogeneous static magnetic field

LL

continuous light conditions

LD

light-dark interval, in h

MET

Middle European Time

MF

magnetic field

Oe

Oersted, i.e. unit of the magnetic field force (1 Oe=79.6 A/m)

Oepp

Oe peak-peak

¯x

mean

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basson ABK, Terblanche SE, Oelofsen W (1982) A comparative study on the effects of ageing and training on the levels of lipofuscin in various tissues of the rat. Comp Biochem Physiol 71 A:369–374Google Scholar
  2. Becker G, Gerisch W (1977) Korrelation zwischen der Fraßaktivität von Termiten und der geomagnetischen Aktivität. Z Angew Entomol 84:353–388Google Scholar
  3. Bräuninger HD (1962) Über den Einfluß meteorologischer Faktoren auf die Entfernungsweisung im Tanz der Bienen. Z Vergl Physiol 48:1–130Google Scholar
  4. Brizzee KR, Ordy JM (1981) Cellular features, regional accumulation and prospects of modification of age pigments in mammals. In: Sohal RS (ed) Age pigments. Biomedical Press, Elsevier/North-Holland, pp 101–154Google Scholar
  5. Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic field of the earth as additional Zeitgeber for endogenous rhythms? Naturwissenschaften 71:567–574Google Scholar
  6. Förster B (1987) Altersabhängige Akkumulation von Lipofuszin in verschiedenen Organen bei Arbeiterinnen der Honigbiene (Apis mellifica). Diplomarbeit, Universität WürzburgGoogle Scholar
  7. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  8. Halliwell B (1981) Free radicals, oxygen toxicity and aging. In: Sohal RS (ed) Age pigments. Biomedical Press, Elsevier/North-Holland, pp 1–62Google Scholar
  9. Harman D (1971) Free radical theory of aging: effect of the amount and degree of unsaturation of dietary fat on mortality rate. J Gerontol 26:451–457Google Scholar
  10. Hepworth D, Pickard RS, Overshott KJ (1980) Effects of the periodically intermittent application of a constant magnetic field on the mobility in darkness of workerbees. J Apic Res 19:179–186Google Scholar
  11. Hochschild R (1971) Effect of membrane stabilizing drugs on mortality inDrosophila melanogaster. Exp Gerontol 6:133–151Google Scholar
  12. Korall H (1987) Der Einfluß statisch verstärkter Magnetfelder auf den Zeitsinn der Honigbiene. Zool Jahrbuch Physiol 91:377–389Google Scholar
  13. Korall H, Leucht T, Martin H (1987) Stören künstliche Magnetfelder den Informationsaustausch zwischen tanzenden Honigbienen und Neulingen? Akad Wiss Lit Mainz 1987:120–121Google Scholar
  14. Korall H, Leucht T, Martin H (1988) Bursts of magnetic fields induce jumps of misdirection in bees by a mechanism of magnetic resonance. J Comp Physiol A 162:279–284Google Scholar
  15. Korall H, Martin H (1987) Responses of bristle field sensilla inApis mellifica to geomagnetic and astrophysical fields. J Comp Physiol A 161:1–22Google Scholar
  16. Leibovitz BE, Siegel BV (1980) Aspects of free radical reactions in biological systems: aging. J Gerontol 35:45–56Google Scholar
  17. Lindauer M (1976) Orientierung der Tiere. Verh Dtsch Zool Ges 69:156–183Google Scholar
  18. Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60:219–243Google Scholar
  19. Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J Comp Physiol 122:145–187Google Scholar
  20. Martin H, Lindauer M, Martin U (1983) „Zeitsinn“ und Aktivitätsrhythmus der Honigbiene — endogen oder exogen gesteuert? Sitzungsb Bayer Akad Wissensch, Math-Naturwiss Kl 1983:1–41Google Scholar
  21. Maurizio A (1950) Untersuchungen über den Einfluß der Pollennahrung und Brutpflege auf die Lebensdauer und den physiologischen Zustand der Bienen. Schweiz Bienenz 73:58–65Google Scholar
  22. Miquel J (1971) Aging of maleDrosophila melanogaster: histological, histochemical and ultrastructural observations. Adv Gerontol Res 3:37–71Google Scholar
  23. Neukirch A (1978) Abhängigkeit der Lebensdauer der Honigbiene (Apis mellifica) von Flugleistung und Energieumsatz. Dissertation, Universität WürzburgGoogle Scholar
  24. Neukirch A (1981) Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol 146:35–40Google Scholar
  25. Neukirch A, Martin H (1986) Vorläufige Ergebnisse zum Einfluß eines künstlich gestörten Magnetfeldes auf den Kohlenhydratstoffwechsel des Honigbienenflugmuskels. Akad Wiss Lit Mainz 1986:114–116Google Scholar
  26. Piruzjan LA, Barsegjan LCh, Cibrikin VM (1973) Die Änderung der Konzentration freier Radikale (FR) in den Organen von Mäusen nach Einwirkung eines magnetischen Gleichfeldes (MGF). Jenaer Rdsch 5:278–281Google Scholar
  27. Reuss S, Olcese J (1986) Magnetic field effects on the rat pineal gland: role of retinal activation by light. Neurosci Lett 64:97–101Google Scholar
  28. Rosenberg B, Kemeny G, Smith LG, Skurnick ID, Bandwiski MJ (1973) The kinetics and thermodynamics of death in multicellular organisms. Mech Ageing Dev 2:275–294Google Scholar
  29. Sachs L (1984) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  30. Schulten K (1982) Magnetic field effects in chemistry and biology. Festkörperprobleme 22:61–83Google Scholar
  31. Schulten K, Windemuth A (1986) Model for a physiological magnetic compass. In: Maret G, Kiepenheuer J, Boccara N (eds) Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 99–106Google Scholar
  32. Schweiger EM (1958) Über individuelle Unterschiede in der Entfernungs- und Richtungsangabe bei den Tänzen der Bienen. Z Vergl Physiol 41:272–299Google Scholar
  33. Sohal RS (1981) Metabolic rate, aging and lipofuscin accumulation. In: Sohal RS (ed) Age pigments. Biomedical Press, Elsevier/North-Holland, pp 303–316Google Scholar
  34. Sohal RS, Donato H (1979) Effect of experimental prolongation of life span on lipofuscin content and lysosomal enzyme activity in the brain of the housefly,Musca domestica. J Gerontol 34:489–496Google Scholar
  35. Sohal RS, Donato H, Boehl ER (1981) Effect of age and metabolic rate on lipid peroxidation in the house fly,Musca domestica. Mech Age Dev 16:159–167Google Scholar
  36. Takahashi A, Philpott DE, Miquel J (1970) Electron microscope studies on agingDrosophila melanogaster: I. Dense bodies. J Gerontol 25:210–217Google Scholar
  37. Technau G (1976) Der Einfluß des Erdmagnetfeldes auf die Entwicklung vonDrosophila melanogaster. Zulassungsarbeit, Universität WürzburgGoogle Scholar
  38. Weller A, Staerk H, Treichel R (1984) Magnetic-field effects on geminate radical-pair recombination. Faraday Discuss Chem Soc 78:271–278Google Scholar
  39. Young RG, Tappel AL (1978) Fluorescent pigment and pentane production by lipid peroxidation in the honey bee,Apis mellifera. Exp Gerontol 13:457–459Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Hermann Martin
    • 1
  • Herbert Korall
    • 1
  • Barbara Förster
    • 1
  1. 1.Zoologisches Institut II der UniversitätWürzburgFederal Republic of Germany

Personalised recommendations