Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of theophylline on respiratory neuromuscular drive

  • 29 Accesses

  • 11 Citations


To investigate the possible mechanisms by which theophylline affects the control of ventilation, neuromuscular drive and ventilatory function were examined in 7 healthy men receiving an incremental intravenous aminophylline dosing schedule to achieve plasma theophylline concentrations of 5, 10, and 15 µg/ml.

As compared with the baseline (predose) values, the 3 incremental aminophylline doses significantly (p<0.05 to 0.01) increased occlusion pressure (P0.1) and maximum inspiratory pressure static (MIPS) at functional residual capacity (FRC). This was not observed for ventilatory flow \((\dot V)\), tidal volume (VT), inspiratory time to total breathing cycle time ratio (Ti/Ttot), VT/Ti, and effective impedance [P0.1/(VT/Ti)].

When maximum electrical activity of diaphragm (Edimax) and transdiaphragmatic pressure (Pdimax) were examined in 3 of the 7 subjects, Pdi/Edi tended to increase with increasing theophylline concentrations, while Edimax did not.

Our results suggest that the increase in P0.1 during the increase in aminophylline dose is caused by an improvement in respiratory muscle contractility, rather than by a central effect or by an increase in neural drive.

This is a preview of subscription content, log in to check access.


  1. 1.

    Sigrist S, Thomas D, Howell S, Roussos C (1982) The effect of aminophylline on inspiratory muscle contractility. Am Rev Respir Dis 126: 46–50

  2. 2.

    Aubier M, De Troyer A, Sampson M, Macklem PT, Rousos C (1981) Aminophylline improves diaphragmatic contractility. N Engl J Med 305: 249–252

  3. 3.

    Aubier M, Murciano D, Viires N, Lecocguic Y, Pariente R (1983) Diaphragmatic contractility enhanced by aminophylline: Role of extracellular calcium. J Appl Physiol 55: 8–15

  4. 4.

    Whitelaw WA, Derenne J-P, Milic-Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23: 181–199

  5. 5.

    Horai Y, Ishizaki T, Sasaki T, Watanabe M, Kabe J (1982) Individualized aminophylline therapy in patients with obstructive airway disease: Oral dosage prediction from an intravenous test dose. Eur J Clin Pharmacol 23: 111–121

  6. 6.

    Milic-Emili J, Grunstein MM (1976) Drive and timing components of ventilation. Chest 70 [Suppl]: 131–133

  7. 7.

    Grassino A, Goldman MD, Mead J, Sears TA (1978) Mechanics of the human diaphragm during voluntary contraction: Statics. J Appl Physiol 44: 829–839

  8. 8.

    Konno K, Mead J (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol 22: 407–422

  9. 9.

    Gross D, Grassino A, Ross WRD, Macklem PT (1979) Electromyogram pattern of diaphragmatic fatigue. J Appl Physiol 46: 1–7

  10. 10.

    Gerhardt T, McCarthy J, Bancalari E (1983) Effects of aminophylline on respiratory center and reflex activity in premature infants with apnea. Pediatr Res 17: 188–191

  11. 11.

    Davi MJ, Sankaran K, Simons FER, Seshia MM, Rigatto H (1978) Physiologic changes induced by theophylline in the treatment of apnea in preterm infants. J Pediatr 92: 91–95

  12. 12.

    Marais OAS, McMichael J (1937) Theophylline-ethylenediamine in Cheyne-Stokes respiration. Lancet 2: 437–440

  13. 13.

    Bellemare F, Grassino A (1983) Force reserve of the diaphragma in patients with chronic obstructive pulmonary disease. J Appl Physiol 55: 8–15

  14. 14.

    Aubier M, Murciano D, Viires N, Lecocguic Y, Palacios S, Pariente R (1983) Increased ventilation caused by improved diaphragmatic efficiency during aminophylline infusion. Am Rev Respir Dis 127: 148–154

  15. 15.

    Estenne M, Yernault JC, De Troyer A (1980) Effects of parenteral aminophylline on lung mechanics in normal human. Am Rev Respir Dis 121: 967–971

  16. 16.

    Mackay AD, Baldwin CJ, Tattersfield AE (1983) Action of intravenously administered aminophylline on normal airways. Am Rev Respir Dis 127: 609–613

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okubo, S., Konno, K., Ishizaki, T. et al. Effect of theophylline on respiratory neuromuscular drive. Eur J Clin Pharmacol 33, 85–88 (1987). https://doi.org/10.1007/BF00610386

Download citation

Key words

  • theophylline
  • aminophylline
  • incremental concentration
  • occlusion pressure
  • maximum inspiratory pressure
  • transdiaphragmatic pressure
  • ventilatory function