Journal of comparative physiology

, Volume 153, Issue 1, pp 85–98 | Cite as

Processing of area dimensions of visual key stimuli by tectal neurons inSalamandra salamandra

  • T. Finkenstädt
  • J. -P. Ewert


InSalamandra salamandra prey-catching behavior was investigated quantitatively in response to moving visual stimuli with the following Gestalt parameters: squares (S), worm-like (W), and antiworm-like (A) stripes of different sizes. It can be shown that the worm vs. antiworm preference is invariant irrespective of changes of the stimulus angular velocity, which contradicts earlier claims made by Luthardt and Roth (1979).

The activity of 47 tectal neurons in response to the same changing Gestalt parameters was recorded extracellularly and investigated quantitatively. Various classes of monocularly driven neurons can be distinguished according to their different ERF sizes; they correspond to large field class T2 neurons (ERF≃100 °), and T4 neurons (ERF≧ 100 °), and to small field T5 neurons (ERF≃34 °) described earlier in frogs and toads.

If the configurational (W, A) response properties of tectal neurons are considered, further (sub-)-classifications can be made with regard to worm preference (1), antiworm preference (3), and selective responses to large areas (4). Whereas class T5(1), T2(3), and T5(3) neurons have also been recorded from the tectum of toads and frogs, class T4(4) and T5(4) neurons appear to be unique toS. salamandra. In the fire salamander, class T5(1) neurons may fulfill functions of command elements in a system that generates the appropriate motor pattern of the prey-catching sequence. Class T5(4) and T4(4) neurons, on the other hand, are suitable candidates for command elements in another system that generates escape behavior.

No class T5(2) neurons have been identified inS. salamandra. It is suggested that highly selective class T5(2) neurons in anurans have evolved concurrently with the parcellation of the dorsal thalamus.


Angular Velocity Visual Stimulus Suitable Candidate Response Property Motor Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



antiworm-like stripe


excitatory receptive field


discriminate value




worm-like stripe


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borchers H-W, Ewert J-P (1979) Correlation between behavioral and neuronal activities of toadsBufo bufo (L.) in response to moving configurational prey stimuli. Behav Processes 4:99–106Google Scholar
  2. Bullock TH (1983) Implications for neuroethology from comparative neurophysiology. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 53–75Google Scholar
  3. Clairambault P (1976) Development of the prosencephalon. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 924–945Google Scholar
  4. Ebbesson SOE (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neural plasticity. Cell Tissue Res 213:179–212Google Scholar
  5. Ebbesson SOE (1983) Neuroanatomical implications for neuroethology. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 77–89Google Scholar
  6. Ewert J-P (1968) Der Einfluβ von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Vergl Physiol 61:41–70Google Scholar
  7. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefangwendereaktionen der Erdkröte (Bufo bufo L.). Pflügers Arch 308:225–243Google Scholar
  8. Ewert J-P (1980) Neuroethology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Ewert J-P (1983/84) Tectal mechanisms underlying prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, (in press)Google Scholar
  10. Ewert J-P, Burghagen H (1979a) Ontogenetic aspects on visual ‘size-constancy’ phenomena in the midwife toadAlytes obstetricans (Laur.). Brain Behav Evol 16:99–112Google Scholar
  11. Ewert J-P, Burghagen H (1979b) Configurational prey selection byBufo, Alytes, Bombina andHyla. Brain Behav Evol 16:157/175Google Scholar
  12. Ewert J-P, Wietersheim A von (1974) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L.). J Comp Physiol 91:131–148Google Scholar
  13. Ewert J-P, Borchers H-W, Wietersheim A von (1978) Question of prey feature detectors in the toad'sBufo bufo (L.) visual system: A correlation analysis. J Comp Physiol 126:43–47Google Scholar
  14. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for preycatching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475Google Scholar
  15. Finkenstädt Th (1980) Disinhibition of prey-catching in the salamander following thalamic-pretectal lesions. Naturwissenschaften 67:471Google Scholar
  16. Finkenstädt Th (1981) Effects of forebrain lesions on visual discrimination inSalamandra salamandra. Naturwissenschaften 68:268Google Scholar
  17. Finkenstädt Th (1983) Influence of the optic tectum and prosencephalic structures on visually controlled prey-catching and avoidance behaviors in the fire salamander. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 585–594Google Scholar
  18. Finkenstädt Th, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: A combined electrical brain stimulation, brain lesion, and extracellular recording study inSalamandra salamandra. J Comp Physiol 153:99–110Google Scholar
  19. Fritzsch B (1980) Retinal projections in European Salamandridae. Cell Tissue Res 213:325–341Google Scholar
  20. Grobstein P, Comer Ch, Kostyk SK (1983) Frog prey capture behavior: between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347Google Scholar
  21. Grüsser OJ, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
  22. Grüsser-Cornehls U, Himstedt W (1976) The urodele visual system. In: Fite KV (ed) The amphibian visual system. Academic Press, New York San Francisco London, pp 203–266Google Scholar
  23. Himstedt W (1982) Prey selection in salamanders. In: Ingle DJ, Goodale MA, Mansfield JW (eds). The analysis of visual behavior. The MIT Press, Cambridge, MassGoogle Scholar
  24. Himstedt W, Fischerleitner E (1975) Die Antworten von Retinaneuronen auf Farbreize bei Urodelen. Zool Jahrb Physiol 79:128–147Google Scholar
  25. Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum ofSalamandra to visual prey stimuli. J Comp Physiol 135:251–257Google Scholar
  26. Himstedt W, Freidank U, Singer E (1976) Die Veränderung eines Auslösemechanismus im Beutefangverhalten während der Entwicklung vonSalamandra salamandra (L.). Z Tierpsychol 41:235–243Google Scholar
  27. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–39Google Scholar
  28. Luthardt G, Roth G (1979) The relationship between stimulus orientation and stimulus movement pattern in the preycatching behavior ofSalamandra salamandra. Copeia 1979:442–447Google Scholar
  29. Roth G (1982) Beuteerkennungsmechanismen im Tectum opticum von Amphibien — eine vergleichende Untersuchung. Funkt Biol Med 1:90–98Google Scholar
  30. Sachs L (1976) Statistische Methoden. Springer, Berlin Heidelberg New YorkGoogle Scholar
  31. Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frogRana temporaria. J Comp Physiol 141:139–152Google Scholar
  32. Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–627Google Scholar
  33. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad's optic tectum and sensori-motor interfacing: HRP studies and recording experiments. J Comp Physiol 144:429–434Google Scholar
  34. Witpaard J (1976) Frog's vision. Nat thesis, LeidenGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • T. Finkenstädt
    • 1
  • J. -P. Ewert
    • 1
  1. 1.Neuroethology and Biocybernetics Laboratories, FB 19University of Kassel (GhK)KasselFederal Republic of Germany

Personalised recommendations