Optical and Quantum Electronics

, Volume 14, Issue 6, pp 501–513 | Cite as

Ion aging effects on the dissociative-attachment instability in CO2 lasers

  • R. E. BeverlyIII


Onset of the dissociative-attachment instability requires that the rate coefficient for electron detachment (kd) from negative ions be below a critical value. The predominant negative and positive ions in a CO2∶N2∶He gas-discharge plasma are known to change with time. As secondary by-products form and the predominant negative-ion species changes from CO 3 to NO 2 , a decrease inkd occurs destabilizing the discharge. Since NO 2 and NO 3 are largely unreactive with respect to associative detachment,kd depends in a sensitive fashion on the concentration of certain minority negative ions (O, O 2 ) and neutrals (CO, O, N). The sufficient conditions for the dissociative-attachment instability are much less sensitive to changes in the electron-ion and ion-ion recombination rate coefficients resulting from the ion aging process.


Recombination Communication Network Aging Process Recombination Rate Rate Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Nighan andW. J. Wiegand,Phys. Rev. A 10 (1974) 922–45.Google Scholar
  2. 2.
    V. N. Oraevskii, O. I. Fisun andE. I. Yurchenko,Sov. J. Plasma Phys. 1 (1975) 446–9.Google Scholar
  3. 3.
    G. D. Myl'nikov andA. P. Napartovich,ibid. 1 (1975) 486–91.Google Scholar
  4. 4.
    D. H. Douglas-Hamilton andS. A. Mani,Appl. Phys. Lett. 23 (1973) 508–10.Google Scholar
  5. 5.
    Idem, J. Appl. Phys. 45 (1974) 4406–15.Google Scholar
  6. 6.
    R. A. Haas,Phys. Rev. A 8 (1973) 1017–43.Google Scholar
  7. 7.
    W. P. Allis,Physica 82C (1976) 43–51.Google Scholar
  8. 8.
    K. Smith andR. M. Thomson, ‘Computer Modelling of Gas Lasers’ (Plenum, New York, 1978) Ch. 7 and 8.Google Scholar
  9. 9.
    W. H. Long, W. F. Bailey, D. R. Pond andA. Garscadden, IEEE First International Conference on Plasma Sciences (Knoxville, Tennessee, 1974); published excerpts from this work may be found in W. L. Nighan, ‘Principals of Laser Plasmas’ (Wiley, New York, 1976) Ch. 7, and A. Garscadden, ‘Gaseous Electronics’ Vol. I (Academic Press, New York, 1978) Part 2.2.Google Scholar
  10. 10.
    A. D. Barkalov andG. G. Gladush,Sov. Phys. Tech. Phys. 24 (1979) 1203–6.Google Scholar
  11. 11.
    P. Bletzinger, D. A. LaBorde, W. F. Bailey, W. H. Long Jr, P. D. Tannen andA. Garscadden,IEEE J. Quantum Electron. QE-11 (1975) 317–23.Google Scholar
  12. 12.
    P. E. Luft, Joint Institute for Laboratory Astrophysics, Boulder, Colorado; Information Center Report No. 14 (1975).Google Scholar
  13. 13.
    E. W. McDaniel andE. A. Mason, ‘The Mobility and Diffusion of Ions in Gases’ (Wiley, New York, 1973).Google Scholar
  14. 14.
    H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason andL. A. Viehland,Atomic Data Nuclear Data Tables 17 (1976) 177–210.Google Scholar
  15. 15.
    H. W. Ellis, E. W. McDaniel, D. L. Albritton, L. A. Viehland, S. L. Lin andE. A. Mason,ibid. 22 (1978) 179–217.Google Scholar
  16. 16.
    F. L. Eisele, H. W. Ellis andE.W. McDaniel,J. Chem. Phys. 70 (1979) 5924–5.Google Scholar
  17. 17.
    F. L. Eisele, M. D. Perkins andE. W. McDaniel,ibid. 73 (1980) 2517–8.Google Scholar
  18. 18.
    R. E. Beverly III,Opt. Quantum Electron. 14 (1982) 25–40.Google Scholar
  19. 19.
    V. V. Breev, V. S. Golubev, S. V. Dvurechenskii andS. V. Pashkin,Sov. J. Plasma Phys. 7 (1981) 111–4.Google Scholar
  20. 20.
    J. Thoenes andS. C. Kurzius, Lockheed Missiles and Space Company, Huntsville, Alabama, Report No. DRCPM-HEL-CR-79-11 (1979).Google Scholar
  21. 21.
    J. Thoenes, S. C. Kurzius andO. C. Hofer, Lockheed Missiles and Space Company, Huntsville, Alabama, Report No. H-CR-78-9 (1978).Google Scholar
  22. 22.
    W. J. Wiegand andW. L. Nighan,Appl. Phys. Lett. 22 (1973) 583–6.Google Scholar
  23. 23.
    H. Shields andA. L. S. Smith,Appl. Phys. 16 (1978) 111–8.Google Scholar
  24. 24.
    J. M. Austin andA. L. S. Smith,J. Phys. D: Appl. Phys. 5 (1972) 468–75.Google Scholar
  25. 25.
    A. L. S. Smith andH. Shields,J. Chem. Phys. 67 (1977) 1594–604.Google Scholar
  26. 26.
    P. D. Tannen, P. Bletzinger andA. Garscadden,IEEE J. Quantum Electron. QE-10 (1974) 6–11.Google Scholar
  27. 27.
    J. F. Prince andA. Garscadden,Appl. Phys. Lett. 27 (1975) 13–5.Google Scholar
  28. 28.
    V. I. Volchenok, V. N. Komanov, S. E. Kupriyanov, A. M. Novosel'tsev andV. I. Stukanog,Sov. J. Plasma Phys. 6 (1980) 241–4.Google Scholar
  29. 29.
    C. J. Elliot, O. P. Judd, A. M. Lockett andS. D. Rockwood, Los Alamos Scientific Laboratory Report No. LA-5562-MS (1974).Google Scholar
  30. 30.
    D. Rapp andP. Englander-Golden,J. Chem. Phys. 43 (1965) 1464–79.Google Scholar
  31. 31.
    J. Schutten, F. J. DeHerr, H. R. Moustafa, A. J. H. Boerboom andJ. Kistemaker,ibid. 44 (1966) 3924–8.Google Scholar
  32. 32.
    K. Stephan, H. Helm, Y. B. Kim, G. Seykora, J. Ramber andM. Grössl,ibid. 73 (1980) 303–8.Google Scholar
  33. 33.
    E. Märk, T. D. Märk, Y. B. Kim andK. Stephan,ibid. 75 (1981) 4446–53.Google Scholar
  34. 34.
    D. Rapp andD. D. Braglia,ibid. 43 (1965) 1480–9.Google Scholar
  35. 35.
    R. N. Crompton andL. G. Christophorou,Phys. Rev. 154 (1967) 110–6.Google Scholar
  36. 36.
    E. W. McDaniel, M. R. Flannery, E. W. Thomas, H. W. Ellis, K. J. McCann, S. T. Manson, J. W. Gallagher, J. R. Rumble, E. C. Beaty andT. G. Roberts, ‘Compilation of Data Relevant to Nuclear Pumped Lasers’ Vol. 4, High Energy Laser Laboratory, U.S. Army MIRADCOM Report No. H-78-1 (1978).Google Scholar
  37. 37.
    L. G. Christophorou, D. L. McCorkle andV. E. Anderson,J. Phys. B: Atom. Molec. Phys. 4 (1971) 1163–75.Google Scholar
  38. 38.
    A. V. Phelps,Can. J. Chem. 47 (1969) 1783–93.Google Scholar
  39. 39.
    L. M. Chanin, A. V. Phelps andM. A. Biondi,Phys. Rev. 162 (1962) 219–30.Google Scholar
  40. 40.
    M. H. Bortner, ‘A Review of Rate Constants of Selected Reactions of Interest in Reentry Flow Fields in the Atmosphere,’ NBS Technical Note 484 (US Department of Commerce, Washington, D.C, 1969).Google Scholar
  41. 41.
    B. H. Mahan andI. C. Walker,J. Chem. Phys. 47 (1967) 3780–2.Google Scholar
  42. 42.
    M. McFarland, D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson andA. L. Schmeltekopf,ibid. 59 (1973) 6629–35.Google Scholar
  43. 43.
    D. L. Albritton,Atomic Data Nuclear Data Tables 22 (1978) 1–101.Google Scholar
  44. 44.
    H. Shields, A. L. S. Smith andB. Norris,J. Phys. D: Appl. Phys. 9 (1976) 1587–603.Google Scholar
  45. 45.
    F. Bastien, R. Haug andM. Lecuiller,J. Chim. Phys. 72 (1975) 105–12.Google Scholar
  46. 46.
    M. A. Biondi, in ‘Principles of Laser Plasmas,’ edited by G. Bekefi (Wiley, New York, 1976) pp. 125–57.Google Scholar
  47. 47.
    M. A. Biondi, ‘Comments on Atomic and Molecular Physics,’ Part D (Gordon and Breach, New York 1974) p. 85.Google Scholar
  48. 48.
    D. R. Bates andA. Dalgarno, in ‘Atomic and Molecular Processes,’ edited by D. R. Bates (Academic Press, New York, 1962) pp. 245–79.Google Scholar
  49. 49.
    G. L. Ogram, J.-S. Chang andR. M. Hobson,Phys. Rev. A 21 (1980) 982–9.Google Scholar
  50. 50.
    C.-M. Huang, M. A. Biondi andR. Johnsen,ibid. 11 (1975) 901–5.Google Scholar
  51. 51.
    W. H. Kashner andM. A. Biondi,Phys. Rev. 174 (1968) 139–44.Google Scholar
  52. 52.
    Estimated in [19, 20] by scaling the few available measurements by the reciprocal square root of the reduced mass of the interacting ions within the positive ion groupings O2+, NO+ and CO2+; see also M. R. Flannery, in “Atomic Processes and Applications,’ edited by P. G. Burke and B. L. Moiseiwitsch (North Holland, Amsterdam, 1976) pp. 409–65.Google Scholar
  53. 53.
    J. T. Moseley, R. E. Olson andJ. R. Peterson, in ‘Case Studies in Atomic Physics’ Vol. 5, edited by E. W. McDaniel and M. R. C. McDowell (North Holland, Amsterdam, 1975) pp. 1–45.Google Scholar
  54. 54.
    A. C. Hindmarsh, Lawrence Livermore Laboratory Report No. UCID-30001, Rev. 3 (1974).Google Scholar
  55. 55.
    A. M. Dykhne andA. P. Napartovich,Sov. Phys. Dokl. 24 (1979) 632–3.Google Scholar
  56. 56.
    P. S. Landa,Sov. J. Plasma Phys. 5 (1979) 764–7.Google Scholar
  57. 57.
    V. G. Dresvyannikov andO. I. Fisun,Sov. Phys. JETP 48 (1978) 1078–83.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • R. E. BeverlyIII
    • 1
  1. 1.ColumbusUSA

Personalised recommendations