Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Examination of the anisotropy of cyclic strength of polymer composite materials

  • 31 Accesses


  1. 1.

    The parameter for the quantitative evaluation of the degree of anisotropy of fatigue strength of the composite materials is proposed.

  2. 2.

    The anisotropy of the low-cycle fatigue strength of the composite materials remains almost unchanged. Depending on the reinforcement structure, the degree of anisotropy of strength in static and cyclic loading may be identical.

  3. 3.

    The anisotropy of the high-cycle fatigue strength of the composite materials remains almost constant or slightly changes with an increase in the number of cycles to fracture, depending on the ratio of the fibers. The woven glass- and carbon-reinforced plastics are characterized by a large reduction in the anisotropy of high-cycle fatigue strength.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    A. A. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Polymer and Composite Matertals [in Russian], 3rd ed., Riga (1980).

  2. 2.

    G. Guidi, “Mechanical characteristics of reinforced plastics,” Ing. Mech.,12, No. 4, 65–72 (1962).

  3. 3.

    K. H. Boiler, “Resume of fatigue characteristics of reinforced plastic laminates subjected to axial loading,” in: Fatigue, An Interdisplinary Approach, Proceedings of the Tenth Sagamore Army Materials Research Conference, Sagamore (1964), pp. 325–341.

  4. 4.

    H. T. Hahn and R. Y. Kim, “Fatigue behavior of composite laminate,” J. Compos. Mater.,10, 154–180 (1976).

  5. 5.

    A. Rotem, “Fatigue mechanism of multidirectional laminate under ambient and elevated temperature,” in: Advances of Composite Materials, Proc. of the Third International Conference, Vol. 1, Paris (1980), pp. 146–161.

  6. 6.

    N. E. Sarkisyan, “Experimental examination of the anisotropy of cyclic strength, strain capacity, and heating of laminated plastics,” Author's Abstract of Candidate's Dissertation, Technical Sciences, Erevan (1971).

  7. 7.

    N. E. Sarkisyan, “Fatigue properties of a glass-reinforced plastic with orthogonal unequal strength reinforcement,” Izv. Akad. Nauk Arm. SSR, Mekh.,29, No. 1, 67–74 (1976).

  8. 8.

    S. T. Buglo, “Examination of the fatigue strength of oriented glass-reinforced plastics in compressive loading,” in: Technology, Physlcomechanical Properties, and Application of Glass-Reinforced Plastics [in Russian], Moscow (1975), pp. 74–79.

  9. 9.

    N. D. Stepanenko, “Rational reinforcement of structures made of composite materials,” Dokl. Akad. Nauk SSSR,243, No. 4, 878–881 (1978).

  10. 10.

    E. W. Smith and K. J. Pascoe, “The role of shear deformation in the fatigue failure of a glass-fiber-reinforced composite,” Composites,8, No. 4, 237–243 (1977).

  11. 11.

    K. L. Reifsnider and A. Talug, “Analysis of fatigue damage In composite laminates,” Int. J. Fatigue,2, No. 1, pp. 3–11 (1980).

  12. 12.

    N. E. Sarkisyan, “Endurance and strain capacity of an oriented glass-reinforced plastic at a high loading frequency,” Izv. Akad. Nauk Arm, SSR, Mekh.27, No. 6, 74–82 (1974).

  13. 13.

    H. R. Thornton and M. Henriksen, “The effect of load rate on the fatigue life of graphite/epoxy composites,” SAME Q,10, No. 4, 1–5 (1979).

  14. 14.

    N. E. Sarkisyan, “Anisotropy of cyclic strength and heating of a glass-reinforced textolite In the presence of a stress raiser,” Izv. Akad. Nauk Arm. SSR, Mekh.,32, No. 4, 63–70 (1979).

  15. 15.

    A. P. Gusenkov, V. P. Kogaev, A. V. Berezin, V. B. Strekalov, B. A. Peshekhonov, and L. K. Zvyagin, “Fatigue resistance of carbon-reinforced plastics in relation to design and technological factors,” Mekh. Kompozitn. Mater., No. 3, pp. 437–442 (1981).

  16. 16.

    M. J. Owen and P. T. Bishop, “Fatigue properties of glass-reinforced plastics containing a stress concentrator,” J. Phys. D, Appl. Phys.,6, No. 17, 2057–2069 (1973).

  17. 17.

    J. B. Sturgeon, “Fatigue of multidirectional carbon fiber-reinforced plastics,” Composites,8, No. 4, 221–226 (1977).

  18. 18.

    P. P. Oldyrev, “Evaluation of the anisotropy of the fatigue strength of composite materials,” Mekh. Kompozitn. Mater., No. 1, 57–61 (1982).

  19. 19.

    Ph. H. Francis, D. Walrath, D. F. Sims, and D. H. Weed, “Biaxial fatigue loading of notched composites,” J. Compos. Mater.,11, 488–501 (1977).

  20. 20.

    M. J. Owen and J. R. Griffiths, “Evaluation of biaxial stress failure surfaces for a glass fabric-reinforced polyester resin under static and fatigue loadings,” J. Mater. Sci.,13, No. 7, 1521–1537 (1978).

  21. 21.

    M. É. Garf, O. Yu. Kramarenko, M. Ya. Filatov, and É. Ya. Filatov, Propagation of Fatigue Cracks in Materials and Structures [in Russian], Kiev (1980).

  22. 22.

    D. Schutz and J. J. Gerharz, “Fatigue strength of a fiber-reinforced material,” Composites,8, No. 4, 245–250 (1977).

  23. 23.

    G. Menges and U. Thebing, “On dimensioning composites under alternating loads,” in: Advances in Composite Materials, Proceedings of Third International Conference, Paris, 1980, Vol. 1, Oxford (1980). pp. 679–692.

  24. 24.

    N. E. Sarkisyan, “Anisotropy of the low-cycle fatigue strength of a glass fiber-reinforced plastic in compression loading,” Mekh. Polim., No. 3, 458–461 (1978).

  25. 25.

    V. O. Geogdzhaev, “Problem of the strength criterion for anisotropic materials,” Tr. Mosk. Fiz. Tekh. Inst., No. 5, 23–29 (1960).

Download references

Author information

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 456–461, May–June, 1984.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarkisyan, N.E. Examination of the anisotropy of cyclic strength of polymer composite materials. Mech Compos Mater 20, 328–332 (1984). https://doi.org/10.1007/BF00610292

Download citation


  • Polymer
  • Fatigue
  • Anisotropy
  • Composite Material
  • Cyclic Loading