Journal of Comparative Physiology A

, Volume 154, Issue 4, pp 535–547 | Cite as

Renewal of visual pigment in photoreceptors of the blowfly

  • Joachim Schwemer
Article

Summary

Spectrophotometric measurements of photoreceptors 1–6 in the blowfly demonstrate that rhodopsin undergoes a continuous renewal. This involves, in the dark, the slow degradation of rhodopsin whereas metarhodopsin is degraded at a much faster rate. The effect of light is to reduce the rate at which metarhodopsin is degraded, i.e. the rate is inversely related to the intensity of the light. Rhodopsin synthesis is dependent on the presence of 11-cis retinal which is formed via a photoreaction from all-trans retinal resulting from the breakdown of rhodopsin and/or metarhodopsin: the biosynthesis of rhodopsin is therefore a light dependent process. Light of the blue/violet spectral range was found to mediate the isomerization of all-trans retinal into the 11-cis form. It is proposed that this stereospecificity is the result of all-trans retinal being bound to a protein. On the basis of the results a visual pigment cycle is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autram H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. (Handbook of sensory physiology, vol VII/6C) Springer, Berlin Heidelberg New York, pp 1–91Google Scholar
  2. Bernard DG (1983) Dark-processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9:277–286Google Scholar
  3. Blest AD (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc R Soc London Ser B 200:463–483Google Scholar
  4. Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum, New York London, pp 217–245Google Scholar
  5. Boschek BC, Hamdorf K (1976) Rhodopsin particles in the photoreceptor membrane of an insect. Z Naturforsch 31c:763Google Scholar
  6. Brown PK, Brown PS (1958) Visual pigments of the octopus and cuttle fish. Nature 182:1288–1290Google Scholar
  7. Brown PK, White RH (1972) Rhodopsin of larval mosquito. J Gen Physiol 59:401–414Google Scholar
  8. Burnel M, Mahler HR, Moore WJ (1970) Protein synthesis in visual cells ofLimulus. J Neurochem 17:1493–1499Google Scholar
  9. Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–430Google Scholar
  10. Eguchi E, Waterman TH (1966) Fine structure patterns in crustacean rhabdoms. In: Bernhard CG (ed) Functional organization of the compound eye. Wenner Green Internatl Symp Series 7. Pergamon Press, Oxford, pp 105–124Google Scholar
  11. Eguchi E, Waterman TH (1967) Changes in retinal fine structure induced in the crabLibinia by light and dark adaptation. Z Zellforsch 79:209–229Google Scholar
  12. Goldman LJ, Barnes SN, Goldsmith TH (1975) Microspectrophotometry of rhodopsin and metarhodopsin in the mothGalleria. J Gen Physiol 66:383–404Google Scholar
  13. Goldsmith TH (1958) The visual system of the honeybee. Proc Natl Acad Sci USA 44:123–126Google Scholar
  14. Goldsmith TH, Bruno M (1973) Behavior of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 147–153Google Scholar
  15. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Invertebrate photoreceptors. (Handbook of sensory physiol, vol VII/6A) Springer, Berlin Heidelberg New York, pp 145–224Google Scholar
  16. Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 263–289Google Scholar
  17. Hamdorf K, Schwemer J, Gogala M (1971a) Insect visual pigment sensitive to ultraviolet light. Nature 231:458–459Google Scholar
  18. Hamdorf K, Gogala M, Schwemer J (1971b) Beschleunigung der Dunkeladaptation eines UV-Rezeptors durch sichtbare Strahlung. Z Vergl Physiol 75:189–199Google Scholar
  19. Hamdorf K, Paulsen R, Schwemer J, Täuber U (1972) Photoreconversion of invertebrate visual pigments. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 97–108Google Scholar
  20. Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 155–166Google Scholar
  21. Hara T, Hara R (1965) New photosensitive pigment found in the retina of the squidOmmastrephes. Nature 206:1331–1334Google Scholar
  22. Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Photochemistry of vision. (Handbook of sensory physiology, vol VII/1) Springer, Berlin Heidelberg New York, pp 720–746Google Scholar
  23. Harris WA, Ready DF, Lipson ED, Hudspeth AJ, Stark WS (1977) Vitamin A deprivation andDrosophila photopigments. Nature 266:648–650Google Scholar
  24. Hillman P, Hochstein S, Minke B (1983) Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev 63:668–772Google Scholar
  25. Hubbard R, St George RCC (1958) The rhodopsin system of the squid. J Gen Physiol 41:501–528Google Scholar
  26. Kropf A, Brown PK, Hubbard (1959) Lumi- and meta-rhodopsin of squid and octopus. Nature 183:446–448Google Scholar
  27. Paulsen R, Schwemer J (1979) Vitamin A-deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim Biophys Acta 557:385–390Google Scholar
  28. Paulsen R, Schwemer J (1983) Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis retinal. Eur J Biochem 137:609–614Google Scholar
  29. Pepe IM, Schwemer J, Paulsen R (1982) Characteristics of retinal-binding proteins from the honeybee retina. Vision Res 22:775–781Google Scholar
  30. Perrelet A (1972) Protein synthesis in the visual cells of the honeybee drone as studied with electron microscope radioautography. J Cell Biol 55:595–605Google Scholar
  31. Schwemer J (1969) Der Sehfarbstoff vonEledone moschata und seine Umsetzungen in der lebenden Netzhaut. Z Vergl Physiol 62:121–152Google Scholar
  32. Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9:287–298Google Scholar
  33. Schwemer J, Gogala M, Hamdorf K (1971) Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z Vergl Physiol 75:174–188Google Scholar
  34. Schwemer J, Henning U (in press) Morphological correlates of visual pigment turnover in fly photoreceptors. Cell Tissue ResGoogle Scholar
  35. Schwemer J, Pepe IM, Paulsen R, Cugnoli C (1984) Lightactivatedtrans-cis isomerization of retinal by a protein from honeybee retina. J Comp Physiol A 154:549–554Google Scholar
  36. Seki T, Hara R, Hara T (1980) Reconstitution of squid rhodopsin in rhabdomal membranes. Photochem Photobiol 32:469–479Google Scholar
  37. Stavenga DG, Schwemer J (in press) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New YorkGoogle Scholar
  38. Stavenga DG, Zantema A, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 175–180Google Scholar
  39. Stein PJ, Brammer JD, Ostroy SE (1979) Renewal of opsin in the photoreceptor cells of the mosquito. J Gen Physiol 74:565–582Google Scholar
  40. Tuurala O, Lehtinen A (1974) Inkorporierung des tritiummarkierten Leucins in die Sehzellen vonOniscus asellus L. (Isopoda, Oniscoidea). Ann Zool Fennici 11:135–140Google Scholar
  41. White RH (1964) The effect of light upon the ultrastructure of the mosquito eye. Am Zool 4:433Google Scholar
  42. White RH (1967) The effect of light deprivation upon the ultrastructure of larval mosquito ey. II. The rhabdom. J Exp Zool 166:405–425Google Scholar
  43. White RH (1968) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. III. Multivesicular bodies and protein uptake. J Exp Zool 169:261–278Google Scholar
  44. Williams DS (1982) Rhabdom size and photoreceptor membrane turnover in a muscoid fly. Cell Tissue Res 226:629–639Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Joachim Schwemer
    • 1
  1. 1.Institut für TierphysiologieRuhr-UniversitätBochum 1Federal Republic of Germany

Personalised recommendations