Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The formation of two-phase layered scales on pure metals

Abstract

The thicknesses of the layers of a two-phase layered scale depend upon the individual stabilities, rates of growth, and molar volumes of the two compound products at a particular temperature. These factors and the partitioning of cations between the two compounds at their common interface are considered in order to develop a quantitative theory for the growth of double-layered scales on pure metals. Although layer thicknesses have been previously measured for several double-layered scales, all of the data necessary to calculate the relative thicknesses according to the present theory are not available. Thus, the theory cannot be verified at this time. However, the relative thicknesses of FeO and Fe3O4 which should form on Fe for 800⩽T⩽1090°C with\(P_{ O_{_2 } } = 10^{ - 11} atm\) are calculated. For two-phase layered scale formation in the oxidation of Co, other calculated values are discussed in terms of experimental results of other investigators.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    K. Fishbeck and F. Salzer,Metallwirtsch. 14, 733, 753 (1935).

  2. 2.

    W. Jost,Diffusion und chemische Reaktion in festen Stoffe (Steinkopff, Leipzig and Dresden, 1937), p. 166.

  3. 3.

    C. Wagner, “Reaktionen mit Metallen,” inHandbuch der Metallphysik, Vol. I, 2 (Leipzig, 1940), p. 143.

  4. 4.

    G. Valensi,Pittsburgh International Conference on Surface Reactions (Corrosion Publ. Co., Pittsburgh, 1948, p. 156.

  5. 5.

    K. Hauffe and W. Schottky,Halbleiterprobleme, Vol. V (Braunschweig, 1960), pp. 258–267.

  6. 6.

    G. V. Kidson,J. Nucl. Mater. 3, 21 (1961).

  7. 7.

    C. Wagner,Acta Met. 17, 99 (1969).

  8. 8.

    H. Schmalzried,Reactivity of Solids, G.-M. Schwab, ed. (Elsevier, Amsterdam, 1965), p. 204.

  9. 9.

    H.-G. Sockel,J. Cryst. Growth 12, 106 (1972).

  10. 10.

    C. Wagner,Z. Phys. Chem. B21, 25 (1933).

  11. 11.

    C. Wagner,Atom Movements (American Society for Metals, Cleveland, 1951), p. 153.

  12. 12.

    P. Vallet and P. Raccah,Mem. Sci. Rev. Met. 62, 1 (1965).

  13. 13.

    L. Himmel, R. F. Mehl, and C. E. Birchenall,Trans. AIME 197, 827 (1953).

  14. 14.

    P. Hembree and J. B. Wagner, Jr.,Trans. TMS-AIME 245, 1547 (1969).

  15. 15.

    C. E. Birchenall, “The Growth of Highly Defective Scales,” inHeterogeneous Kinetics at Elevated Temperatures, C. R. Belton and W. L. Worrell, eds. (Plenum Press, New York, 1970), pp. 253–267.

  16. 16.

    S. M. Klotsman, A. N. Timofeyev, and I. Sh. Trakhtenberg,Phys. Met. Metallog. 10, 93 (1961).

  17. 17.

    V. I. Izvekov,Akad. Nauk. Belarus SSR 1, 64 (1958).

  18. 18.

    H. Schmalzried,Z. Phys. Chem.,31, 184 (1962).

  19. 19.

    Handbook of Chemistry and Physics, R. C. Weast, ed. (Chemical Rubber Co., Cleveland, 1970–1971).

  20. 20.

    R. A. Rapp and D. A. Shores, “Solid Electrolyte Galvanic Cells,” inTechniques of Metals Research, Vol. IV, R. A. Rapp, ed. (Wiley, New York, 1970), p. 159.

  21. 21.

    R. Hales, A. C. Hill, and R. K. Wild,Corrosion Sci. 13, 325 (1973).

  22. 22.

    G. Simkovich and S. Kertoamodjo,Scripta Met. 7, 573 (1973).

  23. 23.

    A. G. Goursat and W. W. Smeltzer,Oxid. Met. 6, 101 (1973).

  24. 24.

    J. Paidassi,Rev. Met. LIV, 569 (1957).

  25. 25.

    J. Paidassi, M. G. Vallee, and P. Pepin,Mem. Sci. Rev. Met. 62, 789 (1965).

  26. 26.

    F. Morin and M. Rigaud,Can. Met. Quart. 9, 521 (1970).

Download references

Author information

Additional information

Supported by the U.S. Air Force (Aeronautical Research Laboratory), the U.S. Office of Naval Research, and an NSF Graduate Traineeship (GJY.).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yurek, G.J., Hirth, J.P. & Rapp, R.A. The formation of two-phase layered scales on pure metals. Oxid Met 8, 265–281 (1974). https://doi.org/10.1007/BF00609944

Download citation

Keywords

  • Oxidation
  • Physical Chemistry
  • Fe3O4
  • Layer Thickness
  • Molar Volume