Oxidation of Metals

, Volume 1, Issue 1, pp 23–54 | Cite as

The role of nickel in the high-temperature oxidation of Fe-Cr-Ni alloys in oxygen

  • M. G. Hobby
  • G. C. Wood


The oxidation of several largely austenitic Fe-Cr-Ni alloys in 1 atm oxygen at 800–1200°C has been studied thermogravimetrically, metallographically, and in detail by electron probe micro analysis. Fe-Cr-Ni alloys of this type are protected by Cr2O3-healed scale, which thickens slower than on the corresponding binary Fe-Cr and Ni-Cr alloys, presumably because nickel and iron ions dope the Cr2O3 more effectively together than singly and/or because the alloy composition and ability to absorb cation vacancies are such as to produce a smaller vacancy activity gradient or level in the scale, or voids within it. The scale adhesion, as on Ni-Cr alloys, is generally good after long times, at least partly due to the convoluted alloy-oxide interface, in some cases to large intergranular Cr2O3-rich stringers, and possibly to the general specimen mechanical properties. Nonprotective stratified scale development is relatively unusual and often produces nickel-rich, alloy-particle-containing nodules, as on Fe-Ni alloys. Careful selection of ternary and more complex alloys with appropriate alloy interdiffusion coefficients and oxygen solubilities and diffusivities should permit development of materials with the best compromise between ease of Cr2O3 establishment, avoidance of breakaway, and readiness of scale healing.


Cation Vacancy Interdiffusion Coefficient Oxygen Solubility Scale Adhesion Complex Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. P. Whittle and G. C. Wood,J. Electrochem. Soc. 114, 986 (1967);115, 126, 133 (1968).Google Scholar
  2. 2.
    G. C. Wood and D. P. Whittle,Corrosion Sci. 7, 763 (1967).Google Scholar
  3. 3.
    G. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).Google Scholar
  4. 4.
    G. C. Wood and T. Hodgkiess,Nature 211, 1358 (1966).Google Scholar
  5. 5.
    G. C. Wood, T. Hodgkiess, and D. P. Whittle,Corrosion Sci. 6, 129 (1966).Google Scholar
  6. 6.
    M. G. Hobby, M.Sc. Thesis, University of Manchester, England (1968).Google Scholar
  7. 7.
    J. Bénard, J. Hertz, Y. Jeannin, and J. Moreau,Mem. Sci. Rev. Met. 57, 389 (1960).Google Scholar
  8. 8.
    I. Iitaka, T. Nakayama, and K. Sekiguchi,J. Sci. Res. Inst. (Tokyo) 45, 57 (1951).Google Scholar
  9. 9.
    H. J. Yearian, W. D. Derbyshire, and J. F. Radavich,Corrosion 13, 597t (1957).Google Scholar
  10. 10.
    H. J. Yearian, H. E. Boren, and R. E. Warr,Corrosion 12, 561t (1956).Google Scholar
  11. 11.
    J. F. Radavich,Corrosion 15, 613t (1959).Google Scholar
  12. 12.
    E. A. Gulbransen, R. T. Phelps, and J. W. Hickman,Ind. Eng. Chem. Anal. Ed. 18, 640 (1946).Google Scholar
  13. 13.
    E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 109, 560 (1962).Google Scholar
  14. 14.
    H. M. McCullough, M. G. Fontana, and F. H. Beck,Trans. Am. Soc. Metals 43, 404 (1951).Google Scholar
  15. 15.
    D. Caplan and M. Cohen,Corrosion 15, 141t (1959).Google Scholar
  16. 16.
    J. O. Edström,J. Iron Steel Inst. (London) 185, 450 (1957).Google Scholar
  17. 17.
    A. T. Brasunas, J. T. Gow, and O. E. Harder,Proc. Am. Soc. Testing Mater 46, 870 (1946).Google Scholar
  18. 18.
    H. L. Eisestein and E. N. Skinner,ASTM Spec. Tech. Publ. 1, No. 165, 162 (1954).Google Scholar
  19. 19.
    J. H. Decroix,Appl. Mater. Res. 3, 35 (1964).Google Scholar
  20. 20.
    H. T. Daniel, J. E. Antill, and K. A. Peakall,J. Iron Steel Inst. (London) 201, 154 (1963).Google Scholar
  21. 21.
    G. Ostberg, L. Unneberg, M. Pourbaix, S. Jansson, W. Hulmer, and L. Hammar,Trans. Am. Nucl. Soc. 8, 122 (1965).Google Scholar
  22. 22.
    M. Vyklicky, A. Kabrhel, and M. Mericka,Strojirenstvi 16, 909 (1966).Google Scholar
  23. 23.
    I. Pfeiffer,Z. Metallk. 51, 322 (1960).Google Scholar
  24. 24.
    J. M. Francis and W. H. Whitlow,J. Iron Steel Inst. (London) 203, 468 (1965).Google Scholar
  25. 25.
    J. M. Francis,J. Iron Steel Inst. (London) 204, 910 (1966).Google Scholar
  26. 26.
    J. M. Francis, C. J. Lee, and J. H. Buddery,J. Iron Steel Inst. (London) 206, 21 (1968).Google Scholar
  27. 27.
    H. E. McCoy,Corrosion 21, 85 (1965).Google Scholar
  28. 28.
    P. Hancock,Corrosion of Alloys at High Temperatures in Atmospheres Consisting of Fuel Combustion Products and Associated Impurities (H.M.S.O., London, 1968).Google Scholar
  29. 29.
    G. C. Wood,Corrosion Sci. 2, 173 (1962).Google Scholar
  30. 30.
    G. C. Wood, M. G. Hobby, and B. Vaszko,J. Iron Steel Inst. (London) 202, 685 (1964).Google Scholar
  31. 31.
    G. C. Wood and M. G. Hobby,J. Iron Steel Inst. (London) 203, 54 (1965).Google Scholar
  32. 32.
    W. B. A. Sharp,Corrosion Sci. 8, 717 (1968).Google Scholar
  33. 33.
    M. G. Hobby and G. C. Wood,Metallurgia 75, 143 (1967).Google Scholar
  34. 34.
    D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Met. 15, 421, 1747 (1967).Google Scholar
  35. 35.
    D. L. Douglass,Corrosion Sci. 8, 665 (1968).Google Scholar
  36. 36.
    T. Hodgkiess, Ph.D. Thesis, University of Manchester, England (1967).Google Scholar
  37. 37.
    I. A. Menzies and J. W. Tomlinson,J. Mater. Sci. 2, 529 (1967).Google Scholar
  38. 38.
    K. Sachs, C. W. Tuck, and J. Barlow,Anticorrosion 1, 20, 33 (1966).Google Scholar
  39. 39.
    K. Sachs,J. Iron Steel Inst. (London) 187, 93 (1957).Google Scholar
  40. 40.
    C. Wagner,J. Electrochem. Soc. 103, 571 (1956).Google Scholar
  41. 41.
    D. P. Whittle and G. C. Wood,Corrosion Sci. 8, 295 (1968).Google Scholar
  42. 42.
    C. Wagner,Corrosion Sci. 8, 889 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1969

Authors and Affiliations

  • M. G. Hobby
    • 1
  • G. C. Wood
    • 2
  1. 1.Department of PhysicsUniversity of LeicesterLeicesterEngland
  2. 2.Corrosion Science Division, Department of Chemical EngineeringUniversity of Manchester Institute of Science and TechnologyManchesterEngland

Personalised recommendations