Advertisement

Journal of comparative physiology

, Volume 95, Issue 4, pp 323–355 | Cite as

Comparison of electroreceptor, mechanoreceptor and optic evoked potentials in the brain of some rays and sharks

  • C. J. Platt
  • T. H. Bullock
  • G. Czéh
  • N. Kovačević
  • Dj. Konjević
  • M. Gojković
Article

Summary

  1. 1.

    Central processing of electroreceptor, mechanoreceptor, and optic input in rays (primarilyTorpedo) and sharks (primarilyScyliorhinus) was studied by recording evoked potentials to both direct nerve shock and natural physiological stimulation. We found that electrosensory input has a widespread, complex central representation; convergence of different modalities occurs in the midbrain, and rays show some consistent differences from sharks in response dynamics.

     
  2. 2.

    Each modality shows distinct forms of evoked potential with a different dependence on recording locus and depth, and a different sequence of recovery, facilitation and depression on stimulus repetition.

     
  3. 3.

    InTorpedo, unlike sharks, the trigeminal nerve is quite distinctly divided into electrosensory (ampullary receptors) and mechanosensory (cutaneous) branches; inputs from these major branches have clearly separable central distributions and dynamics, with evoked responses to direct shock of the maxillary branch showing similarities to, and interactions with responses to d.c. fields in the water.

     
  4. 4.

    Electrosensory and mechanosensory responses in both rays and sharks demonstrate integrative properties already in the medulla, and optic responses also demonstrate early integration, with much longer latencies, in the retina. Prominent, complex, long-lasting responses occur in the tectum bilaterally, but greater contralaterally, with each modality having a different locus of maximum responses. Responses to each modality also occur less prominently, often with different latencies or dynamics, in the telencephalon, cerebellum, and structures deep to the tectum.

     
  5. 5.

    The various rays were consistently different from the sharks in having slower responses to each modality, much slower following capability to repetitive stimuli, and in being extremely resistant to electroshock convulsion. We suggest that the physiological differences in central sensory responses between these rays and sharks may be relevant in analyzing their different behavior.

     

Keywords

Retina Trigeminal Nerve Central Representation Longe Latency Integrative Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoev, G. N., Ilyinsky, O.B.: Some functional characteristics of the electroreceptors (the Ampullae of Lorenzini) of elasmobranchs. Experientia (Basel)29, 293–294 (1973)Google Scholar
  2. Aronson, L. R.: The central nervous system of sharks and bony fishes with special reference to sensory and integrative mechanisms. In: Sharks and survival, p. 165–241, ed. P. W. Gilbert, Boston: Heath 1963Google Scholar
  3. Bastian, J.: Electrosensory input to the corpus cerebelli of the high frequency electric fishEigenmannia virescens. J. comp. Physiol.90, 1–24 (1974)Google Scholar
  4. Bastian, J.: The receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J. Neurophysiol. (in press)Google Scholar
  5. Belbenoit, P., Bauer, R.: Video recordings of prey capture behavior and associated electric organ discharge ofTorpedo marmorata (Chondrichthyes). Mar. Biol.17, 93–99 (1972)Google Scholar
  6. Bennett, M. V. L.: Electroreception. In: Fish physiology, vol. V, eds. W. S. Hoar and D. S. Randall. New York: Academic Press 1971Google Scholar
  7. Biedenbach, M. A.: Functional properties and projection areas of cutaneous receptors in catfish. J. comp. Physiol.84, 227–250 (1973)Google Scholar
  8. Biederman-Thorson, M. A.: Auditory evoked responses in the cerebrum (field L) and ovoid nucleus of the ring dove. Brain Res.24, 235–245 (1970a)Google Scholar
  9. Biederman-Thorson, M. A.: Auditory responses of units in the ovoid nucleus and cerebrum (field L) of the ring dove. Brain Res.24, 247–256 (1970b)Google Scholar
  10. Bruckmoser, P., Dieringer, N.: Evoked potentials in the primary and secondary olfactory projection areas of the forebrain in Elasmobranchia. J. comp. Physiol.87, 65–74 (1973)Google Scholar
  11. Bullock, T. H.: Seeing the world through a new sense: electroreception in fishes. Amer. Sci.61, 316–326 (1973)Google Scholar
  12. Bullock, T. H.: Specialized receptors in lower vertebrates. Introduction. An essay on the discovery of sensory receptors and the assignment of their functions together with an introduction to electroreceptors. In: Handbook of sensory physiology III, ed. A. Fessard. Berlin-Heidelberg-New York: Springer (in press)Google Scholar
  13. Bullock, T. H., Ridgway, S. H.: Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds. J. Neurobiol.3, 79–90 (1972)Google Scholar
  14. Buser, P.: Réponse du tectum de grenouille à la stimulation lumineuse brève; mise en evidence d'une composante lente et tardive. C. R. Soc. Biol. (Paris)143, 30–32 (1949a)Google Scholar
  15. Buser, P.: Analyse de la réponse mésencéphalique à la stimulation du nerf optique chez le poisson-chat. C. R. Soc. Biol. (Paris)143, 817–819 (1949b)Google Scholar
  16. Buser, P.: Contribution à l'étude des potentiels lents centraux. Analyse de l'activité électrique du lobe optique de deux vertébrés inférieurs. Arch. Sci. physiol.3, 471–488 (1949c)Google Scholar
  17. Buser, P.: Caractéristiques spatiales d'une réponse lente centrale. J. Physiol. (Paris)42, 557–559 (1950)Google Scholar
  18. Buser, P.: Modifications, par la strychnine, de la réponse du lobe optique de poisson. Essai d'interprétation. J. Physiol. (Paris)43, 673–677 (1951)Google Scholar
  19. Buser, P.: Analyse des réponses électriques du lobe optique à la stimulation de la voie visuelle chez quelques vertébrés inférieurs. Thesis, Univ. Paris, Masson, Paris (1955)Google Scholar
  20. Buser, P., Dussardier, M.: Organisation des projections de la rétine sur le lobe optique, étudiée chez quelques Téléostéens. J. Physiol. (Paris)45, 57–60 (1953)Google Scholar
  21. Buser, P., Scherrer, J.: Potentiels d'action du nerf optique chez le poisson-chat. C. R. Soc. Biol. (Paris)144, 892–894 (1950)Google Scholar
  22. Coggi, A.: Sviluppo degli organi di senso laterale, delle ampolle di Lorenzini e loro nervi rispettivi inTorpedo. Arch. Zool. Ital.1, 59–107 (1902)Google Scholar
  23. Cohen, D. H., Duff, T. A., Ebbesson, S. O. E.: Electrophysiological identification of a visual area in shark telencephalon. Science182, 492–194 (1973)Google Scholar
  24. Daniel, J. F.: The elasmobranch fishes. Berkeley: University of California Press 1934Google Scholar
  25. Dijkgraaf, S., Kalmijn, A. J.: Untersuchungen über die Funktion der Lorenzinischen Ampullen an Haifischen. Z. vergl. Physiol.47, 438–456 (1963)Google Scholar
  26. Ebbesson, S. O. E., Schroeder, D.: Connections of the nurse shark's telencephalon. Science173, 254–256 (1971)Google Scholar
  27. Ebbesson, S. O. E.: New insights into the organization of the shark brain. Comp. Biochem. Physiol.42A, 121–129 (1972)Google Scholar
  28. Enger, P. S., Bullock, T. H.: Physiological basis of slothfulness in the sloth. Hvalradets Skrifter48, 143–160 (1965)Google Scholar
  29. Enger, P. S., Szabo, T.: Activity of central neurons involved in electroreception in some weakly electric fish (Gymnotidae). J. Neurophysiol.28, 800–818 (1965)Google Scholar
  30. Fessard, A., Szabo, T.: Physiology of electroreception. In: Handbook of sensory physiology III, ed. A. Fessard. Berlin-Heidelberg-New York: Springer (in press)Google Scholar
  31. Fuller, P. M., Ebbesson, S. O. E.: Central projections of the trigeminal nerve in the bullfrog (Rana catesbeiana). J. Comp. Neurol.152, 193–200 (1973)Google Scholar
  32. Ingle, D.: Evolutionary perspectives on the function of the optic tectum. Brain, Behav. Evol.8, 211–237 (1973)Google Scholar
  33. Kalmijn, A. J.: Electro-perception in sharks and rays. Nature (Lond.)212, 1232–1233 (1966)Google Scholar
  34. Kalmijn, A. J.: The electric sense of sharks and rays. J. exp. Biol.54, 373–390 (1971)Google Scholar
  35. Kalmijn, A. J.: The role of electroreceptors in the animal's life. I. The detection of electric fields from inanimate and animate sources other than electric organs. In: Handbook of sensory physiology III, ed. A. Fessard. Berlin-Heidelberg-New York: Springer (in press)Google Scholar
  36. Kappers, C. U. A., Huber, G. C., Crosby, E. C.: The comparative anatomy of the nervous system of vertebrates including man. New York: Hafner Publ. Co. 1936 (reprinting of 1960)Google Scholar
  37. Karamian, A. I., Veselkin, N. P., Belekhova, M., Zagorulko, T. M.: Electrophysiological characteristics of tectal and thalamocortical divisions of the visual system in lower vertebrates. J. comp. Neurol.127, 559–576 (1966)Google Scholar
  38. Karamyan, A. I.: On the evolution of the integrative activity of the central nervous system in the phylogeny of vertebrates. Progr. Brain Res.22, 427–447 (1968)Google Scholar
  39. Konishi, J.: Electrical response of visual center to photic stimulation in light-adapted fishCarassius auratus (L.), especially response from different areas of tectum optioum and effect of local application of drug. [Japanese with English summary.] Dobutsugaku Zasshi32 (11), 428–434 (1957a)Google Scholar
  40. Konishi, J.: Electrical response of visual center to photic stimulation, especially in darkadapted fish,Carassius auratus (L.). [Japanese with English summary.] Dobutsugaku Zasshi 32 (11), 435–438 (1957b)Google Scholar
  41. Maler, L.: The posterior lateral line lobe of a mormyrid fish—a Golgi study. J. comp. Neurol.152, 281–298 (1973)Google Scholar
  42. Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the posterior lateral line nerve ofOnathonemus petersii. J. comp. Neurol.151, 57–66 (1973a)Google Scholar
  43. Maler, L., Karten, H. J., Bennett, M. V. L.: The central connections of the anterior lateral line nerve ofGnathonemus petersii. J. comp. Neurol.151, 67–84 (1973b)Google Scholar
  44. Mikhailenko, N. A.: Biological significance and dynamics of electrical discharges in weak electric fishes of the Black Sea. Zool. Zh.9, 1347–1352 (1971)Google Scholar
  45. Murray, R. W.: Electroreceptor mechanisms: the relation of impulse frequency to stimulus strength and responses to pulsed stimuli in the ampullae of Lorenzini of elasmobranchs. J. Physiol. (Lond.)180, 592–606 (1965)Google Scholar
  46. Nicholson, C., Llinás, R., Precht, W.: Neural elements of the cerebellum in elasmobranch fishes: Structural and functional characteristics. In: Neurobiology of cerebellar evolution and development, ed. R. Llinás. Chicago: Amer. Med Assoc. 1969Google Scholar
  47. Nieuwenhuys, R.: Comparative anatomy of the cerebellum. Progr. Brain Res.25, 1–93 (1967)Google Scholar
  48. Norris, H. W.: The distribution and innervation of the ampullae of Lorenzini of the dogfish,Squalus acanthias. Some comparisons with conditions in other plagiostomes and corrections of prevalent errors. J. comp. Neurol.47, 449–165 (1929)Google Scholar
  49. Norris, H. W.: The laterosensory system ofTorpedo marmorata, innervation, and morphology. J. comp. Neurol.56, 169–178 (1932)Google Scholar
  50. Obara, S., Bennett, M. V. L.: Mode of operation of ampullae of Lorenzini of the skate,Raja. J. gen. Physiol.60, 534–557 (1972)Google Scholar
  51. Pearson, A. A.: The acoustioo-lateral centers and the cerebellum, with fiber connections of fishes. J. comp. Neurol.65, 241–294 (1936)Google Scholar
  52. Peterson, R. H., Prosser, C. L.: The effects of cooling on electrical responses of goldfish (Carassius auratus) central nervous system. Comp. Biochem. Physiol.42A, 1019–1037 (1972)Google Scholar
  53. Réthelyi, M., Szabo, T.: Neurohistological analysis of the lateral lobe in a weakly electric fish,Gymnotus carapo (Gymnotidae, Pisces). Exp. Brain Res.18, 323–339 (1973)Google Scholar
  54. Sand, A.: The function of the ampullae of Lorenzini with some observations on the effect of temperature on sensory rhythms. Proc. roy. Soc. B125, 524–553 (1938)Google Scholar
  55. Schadé, J. P., Weiler, J.: Electroencephalographic patterns of the goldfish (Carassius auratus L.). J. exp. Biol.86, 435–452 (1959)Google Scholar
  56. Scheich, H.: Neuronal analysis of wave form in the time domain: Midbrain units in electric fish during social behavior. Science185, 365–367 (1974)Google Scholar
  57. Scheich, H., Bullock, T. H.: The role of electroreceptors in the animal's life. II. The detection of electric fields from electric organs. In: Handbook of sensory physiology III, ed. A. Fessard. Berlin-Heidelberg-New York: Springer (in press)Google Scholar
  58. Schlegel, P. A.: Perception of objects in weakly electric fishGymnotus carapo as studied in recordings from rhombencephalic neurons. Exp. Brain Res.18, 340–354 (1973)Google Scholar
  59. Suga, N.: Electrosensitivity of specialized and ordinary lateral line organs of the electric fish,Gymnotus carapo. In: Lateral line detectors, p. 395–409, ed. P. H. Cahn. Bloomington: Indiana University Press 1967Google Scholar
  60. Szabo, T.: Un relais dans le système des connexions du lobe électrique de la Torpille. Arch. Anat. micr. Morph. exp.43, 187–201 (1954)Google Scholar
  61. Szabo, T.: Quelque précisions sur le noyau de commande de la dècharge électrique chez la Raie (Raja clavata). J. Physiol. (Paris)47, 283–285 (1955)Google Scholar
  62. Szabo, T.: Anatomy of specialized receptors in lower vertebrates. In: Handbook of sensory physiology III, ed. A. Fessard. Berlin-Heidelberg-New York: Springer (in press)Google Scholar
  63. Veselkin, V. P., Kovaćević, N.: Non-olfactory telencephalic afferent projections in elasmobranch fishes. Zh. evol. Biokhim. Fiziol.9, 585–592 (1973)Google Scholar
  64. Voronin, L. G., Gusselnikov, V. I.: Some comparative physiological data on bioelectric brain reactions. [Russian with English summary.] Zh. Vyssh. Nervoi Dryatel'nusti9, 398–408 (1959)Google Scholar
  65. Voronin, L. G., Gusselnikova, K. G., Gusselnikov, V. I., Supin, A. J.: On the problem of the evolution of the vertebrate afferent systems. Progr. Brain Res.22, 541–565 (1968)Google Scholar
  66. Wachtel, A. W., Szamier, R. B.: Special cutaneous receptor organs of fish. IV. Ampullary organs of the nonelectric catfish,Kryptopterus. J. Morph.128, 291–308 (1969)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • C. J. Platt
    • 1
    • 2
  • T. H. Bullock
    • 1
    • 2
  • G. Czéh
    • 1
    • 2
  • N. Kovačević
    • 1
    • 2
  • Dj. Konjević
    • 1
    • 2
  • M. Gojković
    • 1
    • 2
  1. 1.International Brain Research LaboratoryKotorYugoslavia
  2. 2.Department of Neurosciences, School of Medicine, and Neurobiology Unit, Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations