European Journal of Clinical Pharmacology

, Volume 11, Issue 4, pp 311–315 | Cite as

Cerebrospinal fluid amine metabolites after combined amitriptyline-triiodothyronine treatment of depressed women

  • C. M. Banki


Levels of 5-hydroxyindoleacetic acid and homovanillic acid were measured in cerebrospinal fluid from 33 depressed women with no clinical response to amitriptyline, before and after combination treatment with triiodothyronine. Although the latter showed significant clinical improvement, changes in CSF amine metabolites did not differ significantly from a control group of 16 therapy-resistant depressed women receiving higher doses of amitriptyline. Possible explanations for the mechanism of action of triiodothyronine are discussed.

Key words

Depression triiodothyronine CSF 5-HIAA CSF HVA trimipramine amitriptyline 

Abbreviations used


5-hydroxyindoleacetic acid


homovanillic acid


cerebrospinal fluid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdullah, Y. H., Hamadah, K.: 3′5′-cyclic adenosine monophosphate in depression and mania. Lancet1970 I, 378–381Google Scholar
  2. 2.
    Akiskal, H. S., McKinney, W. T.: Overview of recent research in depression. Arch. gen. Psychiat.32, 285–305 (1975)Google Scholar
  3. 3.
    Ashcroft, G., Crawford, T., Eccleston, E., Sharman, D. F., McDougall, E. J., Stanton, J. B., Binns, K.: 5-hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet1966 II, 1049–1052Google Scholar
  4. 4.
    Banki, C. M.: Triiodothyronine in the treatment of depression. Orv. Hetil.116, 2543–2547 (1975)Google Scholar
  5. 5.
    Banki, C. M.: Cerebrospinal fluid 5-hydroxyindoleacetic acid in mania and depression. Ideggyóg. Szle29, 467–479 (1976)Google Scholar
  6. 6.
    Banki, C. M.: Cerebrospinal fluid homovanillic acid concentrations in manic and depressed patients. Ideggyóg. Szle (in press)Google Scholar
  7. 7.
    Breulet, M., Bourdouxhe, S., Parent, M., Legros, J. J., Bobon, J.: Clinical and neuroendocrinological study of the TRH in melancholia. Acta psychiat. Belg.74, 254–277 (1974)Google Scholar
  8. 8.
    Brodie, B. B., Davis, J. I., Heynie, S.: Interrelationships of catecholamines with other endocrine systems. Pharmacol. Rev.18, 273–281 (1966)Google Scholar
  9. 9.
    Cavalca, G. G., Covezzi, E., Boncinelli, A.: Clinical experiences with the combination of thyroid extract and tricyclics in the treatment of depressed patients. Riv. sper. Freniat.98, 271–300 (1974)Google Scholar
  10. 10.
    Coppen, A., Prange, A. J., Whybrow, P. C., Noguera, R.: Abnormalities of indoleamines in affective disorders. Arch. gen. Psychiat.26, 474–478 (1972)Google Scholar
  11. 11.
    Dencker, S., Malm, U., Roos, B. E.: Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. J. Neurochem.13, 1545–1548 (1966)Google Scholar
  12. 12.
    Earle, B. V.: Thyroid hormone and tricyclic antidepressants in resistant depressions. Amer. J. Psychiat.126, 1667–1669 (1970)Google Scholar
  13. 13.
    Fuxe, K., Ungerstedt, U.: Histochemical studies on the effect of (+)-amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-HT. Europ. J. Pharmacol.4, 135–144 (1968)Google Scholar
  14. 14.
    Gerbode, F. A., Bowers, M. B.: Measurement of acid monoamine metabolites in human and animal cerebrospinal fluid. J. Neurochem.15, 1053–1055 (1968)Google Scholar
  15. 15.
    Glowinski, J., Axelrod, J.: Inhibition of uptake of tritiated noradrenaline in the intact brain by imipramine and structurally related compounds. Nature204, 1318–1319 (1964)Google Scholar
  16. 16.
    Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiat.23, 56–62 (1960)Google Scholar
  17. 17.
    Korf, J., Valkenburgh-Sikkema, T.: Fluorimetric determination of 5-hydroxyindoleacetic acid in human urine and cerebrospinal fluid. Clin. chim. Acta26, 301–306 (1969)Google Scholar
  18. 18.
    Mathematik und Statistik. Basel: Documenta Geigy 1975Google Scholar
  19. 19.
    Mendels, J., Frazer, A., Fitzgerald, R. G., Ramsey, T. A., Stokes, J. W.: Biogenic amine metabolites in cerebrospinal fluid of depressed and manic patients. Science175, 1380–1382 (1972)Google Scholar
  20. 20.
    Ogura, C., Okuma, T., Uchida, Y., Kato, N.: Combined triiodothyroninetricyclic antidepressant treatment in depressive states. Folia psychiat. neurol. jap.28, 179–186 (1974)Google Scholar
  21. 21.
    Papeschi, R., McClure, D. J.: Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid of depressed patients. Arch. gen. Psychiat.25, 354–358 (1971)Google Scholar
  22. 22.
    Paul, M. I., Ditzion, B. R., Pauk, G. L., Janowsky, D. S.: Urinary adenosine-3′5′-monophosphate excretion in affective disorders. Amer. J. Psychiat.126, 1493–1497 (1970)Google Scholar
  23. 23.
    Prange, A. J., Wilson, I. C., Rabon, A. M., Lipton, M. A.: Enhancement of imipramine by triiodothyronine in nonselected depressed patients. Excerpta med. Int. Congress Series180, 532–535 (1968)Google Scholar
  24. 24.
    Prange, A. J., Wilson, I. C., Rabon, A. M., Lipton, M. A.: Enhancement of imipramine antidepressant activity by thyroid hormone. Amer. J. Psychiat.126, 457–469 (1969)Google Scholar
  25. 25.
    Prange, A. J., Wilson, I. C., Knox, A., McClane, T. K., Lipton, M. A.: Enhancement of imipramine by thyroid stimulating hormone: clinical and theoretical implications. Amer. J. Psychiat.127, 191–199 (1970)Google Scholar
  26. 26.
    Ramsden, E. N.: Cyclic AMP in depression and mania. Lancet1970 II, 108–110Google Scholar
  27. 27.
    Sabelli, H. C., Mosnaim, A. D., Vazquez, A. J.: Phenylethylamine, possible role in depression and antidepressive drug action. In: Neurohumoral coding of brain function, (eds. R. D. Myers, R. R. Drucker-Colin) pp. 331–357. New York: Plenum Publ. Co. 1975Google Scholar
  28. 28.
    Schildkraut, J. J., Winokur, A., Applegate, C. W.: Norepinephrine turnover and metabolism in rat brain after long-term administration of imipramine. Science168, 867–869 (1970)Google Scholar
  29. 29.
    Sinanan, K., Keatinge, A. M., Beckett, P. G., Clayton-Love, W.: Urinary cyclic AMP in endogenous and neurotic depression. Brit. J. Psychiat.126, 49–55 (1975)Google Scholar
  30. 30.
    Sjöström, R., Roos, B. E.: 5-hydroxyindoleacetic acid and homovanillic acid in cerebrospinal fluid of manic-depressive psychoses. Europ. J. clin. Pharmacol.4, 170–176 (1972)Google Scholar
  31. 31.
    Van Praag, H. M., Korf, J.: Retarded depression and dopamine metabolism. Psychopharmacologia (Berl.)19, 199–203 (1971)Google Scholar
  32. 32.
    Van Praag, H. M, Korf, J., Schut, J.: Cerebral monoamines and depression; investigation with the probenecid technique. Arch. gen. Psychiat.28, 827–832 (1973)Google Scholar
  33. 33.
    Wilson, I. C., Prange, A. J., McClane, T. K., Rabon, A. M., Lipton, M. A.: Thyroid hormone enhancement of imipramine in non-retarded depressions. New Engl. J. Med.282, 1063–1067 (1970)Google Scholar
  34. 34.
    Wheatley, D.: Potentiation of amitriptyline by thyroid hormone. Arch. gen. Psychiat.26, 229–233 (1972)Google Scholar
  35. 35.
    Whybrow, P. C., Prange, A. J., Treadway, D. R.: Mental changes accompanying thyroid gland dysfunction. Arch. gen. Psychiat.20, 48–63 (1969)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • C. M. Banki
    • 1
  1. 1.Department of PsychiatryCounty Neuropsychiatric InstituteNagykálloHungary

Personalised recommendations