Oxidation of Metals

, Volume 17, Issue 1–2, pp 77–97 | Cite as

Sulfidation of iron at high temperatures and diffusion kinetics in ferrous sulfide

  • M. Danielewski
  • S. Mrowec
  • A. Stołosa


The kinetics and mechanism of iron sulfidation have been studied as a function of temperature (950–1200 K) and sulfur pressure (10−3-0.065 atm). It has been stated that a compact Fe1−yS scale on iron grows according to the parabolic rate law as a result of outward lattice diffusion of metal ions through cation vacancies. The activation energy of sulfidation increases with sulfur pressure and the 1/n exponent increases with temperature. This nontypical dependence of iron sulfidation kinetics on temperature and pressure results from the analogous effect of both these parameters on defect concentration in ferrous sulfide. The chemical diffusion coefficients,DFeS, and diffusion coefficients of defects, Dd, in ferrous sulfide have been calculated on the basis of parabolic rate contacts of iron sulfidation and deviations from stoichiometry in ferrous sulfide. It has been shown thatDFeS is practically independent of cation vacancy concentration whereas the diffusion coefficient of defects depends strongly on that parameter. A comparison of self-diffusion coefficients of iron in Fe1−yS calculated from the kinetics of iron sulfidation to those obtained from radioisotopic studies indicates that within the range studied of temperatures and sulfur vapor pressures the outward diffusion of iron across the scale occurs preferentially along the c axis of columnar ferrous sulfide crystals.

Key words

iron sulfidation parabolic rate defect concentrations chemical-, defect-, self-diffusion coefficients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hauffe and A. Rahmel,Z. Physik Chem. 199, 152 (1952).Google Scholar
  2. 2.
    A. Meussner and C. A. Birchenall,Corrosion 13, 677 (1957).Google Scholar
  3. 3.
    P. W. Geld and A. K. Krasowska,Zh. Fiz. Khim. 34, 1585 (1960).Google Scholar
  4. 4.
    S. Mrowec and T. Werber,Chemia Anal. 7, 605 (1962).Google Scholar
  5. 5.
    A. Brückman and J. Romański,Corros. Sci. 5, 185 (1965).Google Scholar
  6. 6.
    S. Mrowec,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 517 (1967).Google Scholar
  7. 7.
    J. Romański,Corros. Sci. 8, 67 (1968).Google Scholar
  8. 8.
    E. T. Turkdogan,Trans. AIME 242, 1665 (1968).Google Scholar
  9. 9.
    K. N. Strafford and R. Manifeld,Corros. Sci. 9, 489 (1969).Google Scholar
  10. 10.
    T. Narita and K. Nishida,Trans. JIM,14, 439 (1973).Google Scholar
  11. 11.
    T. Narita and K. Nishida,Proceedings of the Fifth International Congress on Metallic Corrosion (National Association Corrosion Engineers, Houston 1974), p. 719.Google Scholar
  12. 12.
    Z. A. Foroulis, in “Properties of High Temperature Alloys”, Z. A. Foroulis, ed. (The Electrochemical Society, Princeton, 1975), p. 77.Google Scholar
  13. 13.
    D. J. Young and W. W. Smeltzer,J. Electrochem Soc. 123, 229 (1976).Google Scholar
  14. 14.
    S. Mrowec, A. Stołosa, and M. Danielewski,Oxid. Met. 11, 355 (1977).Google Scholar
  15. 15.
    M. Danielewski, S. Mrowec, A. Stołosa, and J. Przybyszewska,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 26, 175 (1978).Google Scholar
  16. 16.
    E. M. Fryt, V. S. Bhide, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc.,126, 683 (1979).Google Scholar
  17. 17.
    S. Mrowec and A. Stołosa,Oxid. Met. 8, 379 (1974).Google Scholar
  18. 18.
    E. M. Fryt, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126, 673 (1979).Google Scholar
  19. 19.
    M. Danielewski and A. Stołosa,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 11, 861 (1979).Google Scholar
  20. 20.
    A. Sterten,Corros. Sci. 14, 377 (1974).Google Scholar
  21. 21.
    T. Narita and K. Nishida,Trans. JIM 14, 447 (1973).Google Scholar
  22. 22.
    M. Danielewski, S. Mrowec, and A. Stołosa,Solid State Ionics,1, 287 (1980).Google Scholar
  23. 23.
    R. H. Condit, R. R. Hobbins, and C. E. Birchenall,Oxid. Met. 8, 409 (1974).Google Scholar
  24. 24.
    T. Rosenqvist,J. Iron Steel Inst. 176, 37 (1954).Google Scholar
  25. 25.
    P. Toulmin and P. B. Barton,Geochim. Cosmochim. Acta 28, 641 (1964).Google Scholar
  26. 26.
    M. Nagamori and M. Kamedy,Trans. JIM,9, 187 (1968).Google Scholar
  27. 27.
    W. Burgmann Jr., G. Urbain, and M. G. Frohlerg,Mem. Sci. Rev. Metall. 65, 567 (1968).Google Scholar
  28. 28.
    H. Rau,J. Phys. Chem. Solids,37, 425 (1976).Google Scholar
  29. 29.
    R. Y. Lin, H. Ipser, and Y. A. Chang,Metal Trans. 8B, 347 (1977).Google Scholar
  30. 30.
    H. Kaplan and W. Worrell, inChemistry of Extended Defects in Non-Metallic Solids L. Eyring and M. O'Keefee, eds. (North-Holland, Amsterdam, 1970), p. 561.Google Scholar
  31. 31.
    H. G. Townsed, I. R. Gosellin, R. J. Tremblay, and A. H. Webster,J. Phys. Paris 37, 4–11 (1976).Google Scholar
  32. 32.
    J. Molenda, S. Mrowec, and A. Stołosa,Solid State Ionic,1, 273 (1980).Google Scholar
  33. 33.
    G. G. Libowitz, inReactivity of Solids, J. B. Anderson, M. W. Roberts, and F. S. Stone, eds. (Chapman and Hall, London, 1972), p. 107).Google Scholar
  34. 34.
    C. Wagner,Atom Movements (ASM, Cleveland, 1951), p. 153.Google Scholar
  35. 35.
    F. Booth,Trans. Faraday Soc. 44, 736 (1948).Google Scholar
  36. 36.
    A. T. Fromhold Jr.,Theory of Metal Oxidation (North-Holland, Amsterdam, 1976) p. 69.Google Scholar
  37. 37.
    H. Haraldsen,Z. Anorg. Chem. 246, 169 (1941).Google Scholar
  38. 38.
    F. Gronwald and H. Haraldsen,Acta Chem. Scand. 6, 1452 (1952).Google Scholar
  39. 39.
    R. Perthel,Ann. Physik 5, 273 (1960).Google Scholar
  40. 40.
    W. L. Worrell and E. T. Turkdogan,Metal. Trans. 1, 299 (1970).Google Scholar
  41. 41.
    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).Google Scholar
  42. 42.
    J. C. Ward,Solid State Commun. 9, 357 (1971).Google Scholar
  43. 43.
    T. Narita and K. Nishida,Trans. JIM. 15, 314 (1974).Google Scholar
  44. 44.
    S. Mrowec,Defects and Diffusion in Solids, (PWN-Elsevier, Warszawa, Amsterdam 1980), p. 241.Google Scholar
  45. 45.
    N. F. Mott and R. Gurney,Electronic Processes in Ionic Crystals, (Oxford University Press, Oxford, 1953), p. 34.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • M. Danielewski
    • 1
  • S. Mrowec
    • 1
  • A. Stołosa
    • 1
  1. 1.Academy of Mining and Metallurgy Institute of Materials ScienceCracowPoland

Personalised recommendations