Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetics and mechanisms of the oxidation of cobalt at 600–800°C

  • 180 Accesses

  • 34 Citations

Abstract

Two-phase layered scales comprising CoO and Co 3O4 formed on cobalt during oxidation at 600°, 700°, and 800°C and at oxygen partial pressures in the range 0.001–1 atm. The kinetics, which were obtained by thermogravimetric analysis, obeyed a parabolic rate law after an initial, non-parabolic stage of oxidation. The monoxide consisted of relatively large grains (∼10 μ) and the spinel comprised small grains (⪝3 μ) for all conditions of oxidation. Grain boundary diffusion of cations played a significant role in the growth of the spinel layer. Thermogravimetric data and the steady-state ratio of the oxide layer thicknesses were employed to calculate the rates of thickening of the individual oxide layers and the rate of oxidation of CoO to Co3O4.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. I. Arkharov and Z. A. Voroshilova,Zh. Tekh. Fiz. 6, 781 (1936).

  2. 2.

    C. R. Johns and W. M. Balwdin, Jr.,Trans. AIME 185, 720 (1949).

  3. 3.

    F. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 98, 241 (1951).

  4. 4.

    D. W. Bridges, J. P. Baur, and W. M. Fassell, Jr.,J. Electrochem. Soc. 103, 614 (1956).

  5. 5.

    J. Paidassi, M. Vallée, and P. Pépin,Mem. Sci. Rev. Metall. 62, 789 (1965).

  6. 6.

    J. Paidassi, M. Vallée, and P. Pépin,Mem. Sci. Rev. Metall. 62, 857 (1965).

  7. 7.

    J. Krüger, A. Melin, and H. Winterhager,Cobalt 33, 176 (1966).

  8. 8.

    F. Morin and M. Rigand,Can. Metall. Q. 9, 521 (1970).

  9. 9.

    P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (John Wiley and Sons, New York, 1972), p. 242.

  10. 10.

    C. B. Alcock and M. G. Hocking,Trans. AIME 75C, 27 (1966).

  11. 11.

    L. E. K. Holappa,Acta Polytech. Scand. Chem. Inc. Metall. Ser. 92, 40 (1970).

  12. 12.

    K. Przybylski and W. W. Smeltzer,J. Electrochem. Soc. 128, 897 (1981).

  13. 13.

    W. W. Smeltzer, R. R. Haering, and J. S. Kirkaldy,Acta Metall. 9, 880 (1961).

  14. 14.

    H. S. Hsu and G. J. Yurek, Massachusetts Institute of Technology, Cambridge, Massachusetts, unpublished results (1981).

  15. 15.

    G. J. Yurek, J. P. Hirth, and R. A. Rapp,Oxid. Met. 8, 265 (1974).

  16. 16.

    F. Gesmundo and F. Viani,Corros. Sci. 18, 217 (1978).

  17. 17.

    C. Wagner,Prog. Solid. State Chem. 10, 3 (1975).

  18. 18.

    M. H. Davies, M. T. Simnad, and C. E. Birchenall,Trans. AIME 191, 889 (1951);197, 1250 (1953).

  19. 19.

    C. E. Meyers, M.S. thesis, Massachusetts Institute of Technology (February 1980).

  20. 20.

    R. Dieckmann, H. Schmalzried, and T. O. Mason,Archiv. Eisenhüttenwes. 52, 211 (1981).

  21. 21.

    R. Dieckmann, University of Hannover, Hannover, Germany, private communication (1981).

  22. 22.

    P. G. Shewmon,Diffusion in Solids (McGraw-Hill, New York, 1963) pp. 166–175.

  23. 23.

    J. M. Perrow, W. W. Smeltzer, and J. D. Embury,Acta Metall. 16, 1209 (1968).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsu, H.S., Yurek, G.J. Kinetics and mechanisms of the oxidation of cobalt at 600–800°C. Oxid Met 17, 55–76 (1982). https://doi.org/10.1007/BF00606193

Download citation

Key words

  • oxidation
  • cobalt
  • diffusion
  • grain boundaries
  • Co3O4