Journal of Comparative Physiology A

, Volume 162, Issue 3, pp 413–419 | Cite as

Spiral orientation ofAraneus diadematus orb webs built during vertical rotation

  • Fritz Vollrath


Standard spider frames were continuously rotated in a vertical klinostat at different speeds, changed each day, in a rising sequence through 0.3, 0.7, 2.3, 4.9, 10, 20, 30, and 60 rpm. They were also rotated at various speeds between 100 and 150 rpm. Speed of rotation did have a marked effect on a number of web parameters. It is concluded that gravity is an important compass reference for orientation during web construction. The effect was greatest at medium speeds, and less pronounced not only at slower but also at higher speeds. The most striking effect was the complete disorientation of the spider during construction of the capture spiral at 5 and 10 rpm. Surprisingly no comparable disorientation was found in the auxiliary spiral. This suggests different orientation mechanisms for the two spirals. The ability to orient the capture spiral at high speeds may be due to the effect of centripetal forces, but it may also be attributed to an evolutionary adaptation to building in windy environments where the spider might experience linear accelerations of severalg.


Marked Effect Linear Acceleration Evolutionary Adaptation Striking Effect Centripetal Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



rotations per minute


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crawford JD (1984) Orientation in a vertical plane: the use of light cues by an orb-weaving spider,Araneus diadematus Clerk. Anim Behav 32:162–171Google Scholar
  2. Eberhard WG (1982) Construction behaviour and the distribution of tensions in webs. Bull Br Arachnol Soc 5:189–204Google Scholar
  3. Eberhard WG (1982) Behavioural characters for the higher classification of orb-weaving spiders. Evolution 36:1067–1095Google Scholar
  4. Finck A (1982) Gravito-inertial sensitivity of the spider:Araneus sericatus. Physiologist 25 [Suppl]: 121–122Google Scholar
  5. Holzapfel M (1934) Die nichtoptische Orientierung der TrichterspinneAgelena labyrinthica (Cl.). Z Vergl Physiol 20:55–115Google Scholar
  6. König M (1951) Beiträge zur Kenntnis des Netzbaus orbiteler Spinnen. Z Tierpsychol 8:462–492Google Scholar
  7. LeGuelte L (1966) Structure de la toile deZygiella x-notata Cl. (Araignées, Argiopidae) et facteurs qui régissent le comportement de l'Araignée pendent la construction de la toile. Thèse, Publ Université de NancyGoogle Scholar
  8. LeGuelte L (1969) Learning in spiders. Am Zool 9:145–152Google Scholar
  9. Markl H (1975) The perception of gravity and angular acceleration in invertebrates. In: Korhhuber HH (ed) Vestibular system (Handbook of sensory physiology, vol VI/1). Springer, Berlin Heidelberg New York, pp 17–74Google Scholar
  10. Mayer G (1952) Untersuchungen über die Herstellung und Struktur des Radnetzes vonAranea diademata undZilla x-notata mit besonderer Berücksichtigung des Unterschiedes von Jugend und Altersnetzen. Z Tierpsychol 9:337–364Google Scholar
  11. Peters HM (1932) Experimente über die Orientierung der KreuzspinneEpeira diademata Cl. im Netz. Zool Jb Physiol 51:239–288Google Scholar
  12. Peters HM (1933) Kleine Beiträge zur Biologie der KreuzspinneEpeira diademata Cl. Z Morphol Ökol Tiere 26:447–468Google Scholar
  13. Peters HM (1937) Studien am Netz der Kreuzspinne (Aranea diademata): I. Die Grundstructur des Netzes und Beziehungen zum Bauplan des Spinnenkörpers; II. Über die Herstellung des Rahmens, der Radialfäden und der Hilfsspirale. Z Morphol Ökol Tiere: 32:613–649; 33:128–150Google Scholar
  14. Peters HM (1939) Über das Kreuzspinnennetz und seine Probleme. Naturwissenschaften 27:777–789Google Scholar
  15. Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New YorkGoogle Scholar
  16. Suter RB (1984) Web tension and gravity as cues in spider orientation. Behav Ecol Sociobiol 16:31–36Google Scholar
  17. Vollrath F (1986) Gravity as an orientation guide during webconstruction in the orb spiderAraneus diadematus (Araneae, Araneidae). J Comp Physiol A 159:275–280Google Scholar
  18. Vollrath F (1987) Altered geometry of webs in spiders with regenerated legs. Nature 328:247–248Google Scholar
  19. Vollrath F, Mohren W (1985) Spiral geometry in the garden spider's orb web. Naturwissenschaften 72:666–667Google Scholar
  20. Witt PN, Reed CF, Peakall DB (1968) A spider's web — problems in regulatory biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Witt PN, Scarboro MP, Peakall DB, Gause R (1977) Spider web-building in outer space: evaluation of records from the Skylab spider experiment. Am J Arachnol 4:115–124Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Fritz Vollrath
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations