Journal of Comparative Physiology A

, Volume 162, Issue 3, pp 279–284 | Cite as

Bursts of magnetic fields induce jumps of misdirection in bees by a mechanism of magnetic resonance

  • Herbert Korall
  • Thomas Leucht
  • Hermann Martin
Article

Summary

Magnetic field (MF) bursts at a frequency of 250 Hz oriented parallel to the field-lines of the EMF induce unequivocal ‘jumps’ of misdirection of up to +10°. The regression of burst intensity (BI inγ; for a range of 10–1400γ) and the size of the induced jumps of misdirection (DMID in angular degrees) follow the equation: DMID= −1+ln BI. Compensation (<5% of the total intensity) of the EMF, continuous 250 Hz fields and bursts perpendicular to the static MF have no effect. The effects described are discussed from the point of view of magnetic resonance.

Abbreviations

BI

burst intensity inγ

DMID

difference (jump) of misdirection in angular degrees

EMF

earth's magnetic field

ΔF

MF variation of the total component

g

stands forγ in figures

H

magnetic field force in Oersteds

MF

magnetic field

NAT

natural magnetic field in Tables (= EMF)

Oe

Oersted, unit of the magnetic field force

γ

10−5Oe

g

gyromagnetic ratio (a nuclear specific constant) in Hertz/Gauss

μn

nuclear magneton

ωL

Larmor frequency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dwek RA (1973) Nuclear magnetic resonance (N.M.R.) in biochemistry. Clarendon Press, OxfordGoogle Scholar
  2. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Kilbert K (1979) Geräuschanalyse der Tanzlaute der Honigbiene (Apis mellifica) in unterschiedlichen magnetischen Feldsituationen. J Comp Physiol 132:11–25Google Scholar
  4. Kirschvink JL (1981) The horizontal magnetic dance of the honeybee is compatible with a single-domain ferromagnetic magnetoreceptor. BioSystems 14:193–203Google Scholar
  5. Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201Google Scholar
  6. Knowles PF, Marsh D, Rattle HWE (1976) Magnetic resonance of biomolecules. An introduction to the theory and practice of NMR and ESR in biological systems. John Wiley, London New York Sydney TorontoGoogle Scholar
  7. Korall H, Martin H (1987) Responses of bristle field sensilla inApis mellifica to geomagnetic and astrophysical fields. J Comp Physiol A 161:1–22Google Scholar
  8. Lindauer M (1976) Orientierung der Tiere. Verb Dtsch Zool Ges 1976:156–183Google Scholar
  9. Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60:219–243Google Scholar
  10. Martin H, Lindauer M (1973) Orientierung im Erdmagnetfeld. Fortschr Zool 21(2/3):211–228Google Scholar
  11. Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J Comp Physiol 122:145–187Google Scholar
  12. McLaughlin AC, Cullis PR, Hemminga M, Brown FF, Brocklehurst J (1977) Magnetic resonance studies of model and biological membranes. In: Dwek RA, Campbell ID, Richards RE, Williams RJP (eds) NMR in biology. Academic Press, London New York San Francisco, pp 231–246Google Scholar
  13. Roth K, Gronenborn AM (1982) NMR Tomographie. Chemie in unserer Zeit 20(2):35–45Google Scholar
  14. Schulten K, Windemuth A (1986) Model for a physiological magnetic compass. In: Maret G, Kiepenheuer J, Boccara N (eds) Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 99–106Google Scholar
  15. Slichter CP (1964) Principles of magnetic resonance (with examples from solid state physics). Harper & Row, New York/Evanston and Weatherhill Inc, TokyoGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Herbert Korall
    • 1
  • Thomas Leucht
    • 1
  • Hermann Martin
    • 1
  1. 1.Zoologisches Institut IIUniversität WürzburgWürzburgGermany

Personalised recommendations