Advertisement

Journal of comparative physiology

, Volume 142, Issue 1, pp 43–49 | Cite as

Fly rhabdomeres twist in vivo

  • Ulrich Smola
  • Hansjörg Wunderer
Article

Summary

Electron-microscopic examination shows that the rhabdomeres of the visual cells ofMusca domestica twist in the manner typical ofCalliphora erythrocephala andDrosophila melanogaster. More-over, it can be demonstrated that the rhabdomere section shown by Ribi (1979, Fig. 2) is from a twisting rhabdomere. Rhabdomere twist appears to be a wide-spread feature of dipteran eyes.

Keywords

Visual Cell Rhabdomere Twist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539Google Scholar
  2. Franceschini N, Hardie RC (1980) In vivo recovery of dye-injected photoreceptor cells in the retina of the flyMusca domestica. J Physiol 301:59P-60PGoogle Scholar
  3. Grundler OJ (1974) Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifera). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiologie 9:203–220Google Scholar
  4. Kirschfeld K (1969) Absorption properties of photopigments in single rods, cones and rhabdomeres. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, New York, pp 116–136Google Scholar
  5. Labhart T. Meyer E (1980) Ultrastructural and electrophysiological studies on a specialized area of the honeybee's eye. Experientia 36:698Google Scholar
  6. Langer H (1967) Grundlagen der Wahrnehmung von Wellenlänge und Schwingungsebene des Lichtes. Verh Dtsch Zool Ges Göttingen 30:195–233Google Scholar
  7. McIntyre P, Snyder AW (1978) Light propagation in twisted anisotrop media: Application to photoreceptors. J Opt Soc Am 68:149–157Google Scholar
  8. Menzel R, Blakers M (1975) Functional organisation of an insect ommatidium with fused rhabdom. Cytobiologie 11:279–298Google Scholar
  9. Mimura K (1978) Electrophysiological evidence for interaction between retinula cells in the flesh-fly. J Comp Physiol 125:209–216Google Scholar
  10. Ribi WA (1979) Do the rhabdomeric structures in bees and flies really twist? J Comp Physiol 134:109–112Google Scholar
  11. Ribi WA (1980) New aspects of polarized light detection in the bees in view of non-twisting rhabdomeric structures. J Comp Physiol 137:281–285Google Scholar
  12. Scholes J (1969) The electrical responses of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik 6:149–162Google Scholar
  13. Smola U (1977) Das Twisten der Rhabdomere der Sehzellen im Auge vonCalliphora erythrocephala. Verh Dtsch Zool Ges 1977:234Google Scholar
  14. Smola U, Tscharntke H (1979) Twisted rhabdomeres in Diptera. J Comp Physiol 133:291–297Google Scholar
  15. Venable JH, Coggeshall R (1965) A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408Google Scholar
  16. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245Google Scholar
  17. Wehner R, Meyer E (1981) Rhabdom twist in bees — artefact or in vivo structure? J Comp Physiol 142:1–17Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ulrich Smola
    • 1
  • Hansjörg Wunderer
    • 1
  1. 1.Zoologisches Institut der UniversitätMünchen 2Federal Republic of Germany

Personalised recommendations