Journal of comparative physiology

, Volume 116, Issue 2, pp 161–182 | Cite as

Acuity of compound eyes: Physical limitations and design

  • Allan W. Snyder


The two fundamental limitations to resolving power of compound eyes are the wave (diffraction) and particle (photon noise) nature of light. By appreciating their interrelationship we gain insight into the design and limitation of eyes. In particular, we determine the dependence of eye design on the environmental light intensity.
  1. 1.

    The limitations to resolving power include: the intensity of light, angular motion, receptor grain, lens-pupil blur, finite diameter of rhabdom, and neural convergence.

  2. 2.

    Only those animals that are active in bright sunlight and normally have low angular velocity, profit by having some region of their eyes near the diffraction limit, i.e.DΔφ ≅ 0.58λ, whereD is the facet diameter,Δφ the interommatidial angle and λ the wavelength in vacuum. If these conditions are not fulfilled, it is better to have a largerDΔφ.

  3. 3.

    The effect of an animal undergoing angular velocityu is equivalent to a reduction in light intensity by the amount exp−1.78(φtΔφ)2, where φt is the amount the animal turns in one integration time. Taking this into account, we present a possible explanation forMusca havingDΔφ about 4.5 times greater than the diffraction limit.

  4. 4.

    Various strategies for dark-adaptation are considered with the conclusion that neural pooling combined with a widening of the acceptance angle is most effective for coping with reduced intensities.



Light Intensity Angular Velocity Integration Time Physical Limitation Fundamental Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow, H.B.: The size of ommatidia in apposition eyes. J. exp. Biol.29, 667–674 (1952)Google Scholar
  2. Bracewell, R.: The Fourier transform and its applications. New York: McGraw-Hill 1965Google Scholar
  3. Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly,Syritta pipiens L. J. comp. Physiol.99, 1–66 (1975)Google Scholar
  4. Fermi, G., Reichardt, W.: Optomotor reactions of the houseflyMusca domestica. Kybernetik2, 15 (1963)Google Scholar
  5. Fox, R., Lumkuhle, S.W., Westendorf, D.H.: Falcon visual acuity. Science192, 263–265 (1976)Google Scholar
  6. Goetz, K.G.: Optomotorische Untersuchung des visuellen Systems eines Augenmutanten der FruchtfliegeDrosophila. Kybernetik2, 77–86 (1964)Google Scholar
  7. Goetz, K.G.: Die optischen Uebertragungseigenschaften der Komplexaugen vonDrosophila. Kybernetik2, 215–221 (1965)Google Scholar
  8. Goodman, J.W.: Introduction to Fourier optics. New York: McGraw Hill 1968Google Scholar
  9. Horridge, G.A.: Optical mechanisms of clear zone eyes. In: The compound eye and vision of insects (ed. G. A. Horridge). Oxford: Clarendon Press 1975Google Scholar
  10. Horridge, G. A.: Looking at insect eyes. Sci. Amer. (1976)Google Scholar
  11. Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch.29c, 592–596 (1974)Google Scholar
  12. Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural processing in visual systems (F. Zettler, R. Weiler, eds.). Berlin-Heidelberg-New York: Springer 1976Google Scholar
  13. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik6, 47–52 (1968)Google Scholar
  14. Kirschfeld, K., Wenk, P.: The dorsal eye of sinuliid flies. Naturforsch. In press (1976)Google Scholar
  15. Kuiper, J.W.: On the image formation in a single ommatidium of the compound eye in Diptera. In: The functional organization of the compound eye (C.G. Bernhard, ed.), pp. 35–50. Oxford: Pergamon Press 1966Google Scholar
  16. Land, M.F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. comp. Physiol.89, 331–357 (1974)Google Scholar
  17. Laughlin, S.B.: Receptor function in the apposition eye. An electrophysical approach. In: Photoreceptor optics (A.W. Snyder, R. Menzel, eds.), pp. 479–498. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  18. Le Grand, Y.: Light, colour and vision, second ed., p. 84. London: Shapman and Hall 1968Google Scholar
  19. Mallock, A.: Proc. roy. Soc.B55, p. 85 (1894)Google Scholar
  20. Mallock, A.: Divided composite eyes. Nature (Lond.)110, 770–771 (1922)Google Scholar
  21. Mazokhin-Porshnyakov, G.A.: Insect vision. New York: Plenum Press 1969Google Scholar
  22. Petersen, D.P., Middleton, D.: Sampling and reconstruction of wave number limed functions inN-dimensional euclidean spaces. Information and control5, 279–293 (1962)Google Scholar
  23. Portillo, J. del: Beziehungen zwischen Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insekten-Augen und ihrer funktionellen Aufgabe. Z. vergl. Physiol.23, 100–145 (1936)Google Scholar
  24. Rose, A.: Vision, human and electronic. New York-London: Plenum Press 1973Google Scholar
  25. Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). To be submitted (1976)Google Scholar
  26. Snyder, A.W.: The physics of vision in compound eyes. In: Handbook of sensory physiology. Vol. VII/6A,Invertebrates-photoreceptor organs (H. Autrum, ed.). Berlin-Heidelberg-New York: Springer 1977Google Scholar
  27. Snyder, A.W., Laughlin, S.B., Stavenga, D.G.: Information capacity of eyes. Vision Res., in press (1977)Google Scholar
  28. Snyder, A.W., Stavenga, D.G., Laughlin, S.B.: Spatial information capacity of compound eyes. J. comp. Physiol.116, 183–207 (1977)Google Scholar
  29. Srinivansan, M.V., Bernard, G.D.: The effect of motion on visual acuity of the compound eye: A theoretical analysis. Vision Res.15, 515–525 (1975)Google Scholar
  30. Stavenga, D.G.: Optical qualities of the fly eye-An approach from the side of geometrical, physical and waveguide optics. In: Photoreceptor optics (A. W. Snyder, ed.), pp. 126–144. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  31. Tunstall, J., Horridge, G.A.: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol.55, 167 (1967)Google Scholar
  32. Vries, H. de: Physical aspects of the sense organs. Progr. Biophys.6, 208–264 (1956)Google Scholar
  33. Wallcott, B.: Anatomical changes during light adaptation in insect eyes. In: The compound eyes and vision of insects (G. A. Horridge, ed.). London: Oxford Press 1975Google Scholar
  34. Wyszeckiv, G., Stiles, W.S.: Color science concepts and methods, quantitative data and formula. New York: John Wiley 1967Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Allan W. Snyder
    • 1
  1. 1.Institute of Advanced Studies, Departments of Applied Mathematics and NeurobiologyAustralian National UniversityCanberraAustralia

Personalised recommendations