Archiv für Toxikologie

, Volume 30, Issue 1, pp 67–74 | Cite as

The mutagenic effects of organophosphorus pesticides on micro-organisms

  • B. J. Dean
Toxicology of Dichlorvos


Nine organophosphorus pesticides and twelve known chemical mutagens were applied to agar plate cultures ofEscherichia coli WP 2. After incubation, the cultures were examined for an increase in reverse mutation rate.

Dicrotophos and dichlorvos, and four alkylating agents were tested against two mutant strains of Serratia marcescens using the paper disc technique.

The organophosphorus pesticides did not increase the reversion rate inEscherichia coli WP 2. Dicrotophos was also negative when tested against Serratia marcescens. Dichlorvos induced a dose-related increase in reversion rate in both strains of Serratia marcescens.

The significance of the results are discussed in relation to the rapid metabolism of dichlorvosin vivo and the absence of any mutagenic effect in mammalian test systems.

Key words

Mutagenic Effect Organophosphorus Compounds Pesticides Dichlorvos 


Neun Organophosphorsäurepestizide und zwölf chemische Mutagene wurden an Escherichia coli WP 2-Agarkulturen auf mutagene Wirkung im Sinne einer Steigerung der Rückmutationsrate getestet. Außerdem wurden Bidrin, Dichlorvos und 4 alkylierende Substanzen an 2 geeigneten Stämmen der Serratia marcescens mit Hilfe der Paper-disc-Methode geprüft. Die Organophosphorsäurepestizide erhöhten nicht die Rückmutationsrate bei E. coli WP 2. Bidrin war auch nicht mutagen im Test mit Serratia marcescens. Dichlorvos erhöhte die Rückmutationsrate dosisabhängig an beiden Stämmen von Serratia marcescens. Die fehlende mutagene Wirkung von Dichlorvos am Säugetier wird unter Berücksichtigung der schnellen Metabolisierung diskutiert.


Mutagene Wirkung Organophosphate Pestizide Dichlorvos 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedford, C.: The alkylating properties of organophosphorus pesticides. Toxicol. appl. Pharmacol. In press (1972).Google Scholar
  2. Belser, W., Bunting, M. J.: Studies on a mechanism providing for genetic transfer inSerratia marcescens. J. Bact.72, 582–592 (1956).Google Scholar
  3. Bridges, B. A.: Personal communication (1971).Google Scholar
  4. —, Dennis, R. E., Munsen, R. J.: Differential induction and repair of ultraviolet damage leading to true reversions and external suppressor mutations of an ochre codon inEscherichia coli B/r WP 2. Genetics57, 897 (1967).Google Scholar
  5. Bridges, B. A., Law, J., Munsen, R. J.: Mutagenesis inEscherichia coli. II. Evidence for a common pathway for mutagenesis by ultraviolet light, ionising radiation and Thymine deprivation. Molec. gen. Genet.103, 266–273 (1968).Google Scholar
  6. —, Munsen, R. J.: Mutagenesis inEscherichia coli: evidence for the mechanism of base change mutation by ultraviolet radiation in a strain deficient in excision repair. Proc. roy Soc. B.171, 213–226 (1968).Google Scholar
  7. Dean, B. J.: The effect of dichlorvos on cultured human lymphocytes. Arch. Toxikol.30, 75–85 (1972).Google Scholar
  8. —, Thorpe, E.: Studies with dichlorvos vapour in dominant lethal mutation tests on mice. Arch. Toxikol.30, 51–59 (1972).Google Scholar
  9. — —: Cytogenetic studies with dichlorvos in mice and Chinese hamsters. Arch. Toxicol.30, 39–49 (1972).Google Scholar
  10. Demerec, R., Bertani, G., Flint, J.: A survey of chemicals for mutagenic action onEscherichia coli. Amer. Naturalist85, 119–136 (1951).Google Scholar
  11. Grigg, G. W., Stuckey, J.: The reversible suppression of stationary phase mutation inEscherichia coli by caffeine. Genetics53, 823 (1966).Google Scholar
  12. Haas, F. L., Doudney, C. O.: A relation of nucleic acid synthesis to radiation induced mutation frequency in bacteria. Proc. nat. Acad. Sci. (Wash.)43, 871–883 (1957).Google Scholar
  13. Hutson, D. H., Hoadley, E. C.: The comparative metabolism of [14C-vinyl]-dichlorvos in animals and man. Arch. Toxikol.30, 9–18. (1972).Google Scholar
  14. — —: The metabolism of [14C-methyl] dichlorvos in the rat and mouse. Xenobiotica.30, 9–18 (1972).Google Scholar
  15. Iyer, V. N., Szybalski, W.: Two simple methods for the detection of chemical mutagens. Appl. Microbiol.6, 23–29 (1958).Google Scholar
  16. Kaplan, R. W., Brendel, M.: Formation of prototrophs in mixtures of two auxotrophic mutants of Serratia marcescens HY by a transducing bacteriophage produced by some auxotrophs. Molec. gen. Genet.104, 27–29 (1969).Google Scholar
  17. Lawley, P. D., Brookes, P.: Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J.89, 127–138 (1963).Google Scholar
  18. Michalek, S. M., Brockman, H. E.: A test for mutagenicity of shell “No-Pest Strip Insecticide” inNeurospora crassa. Neurospora Newsletter14, 8 (1969).Google Scholar
  19. Mohn, G.: Micro-organisms as test systems for mutagenicity. Arch. Toxikol.28, 93–104 (1971).Google Scholar
  20. - (2) Personal communication. (1971).Google Scholar
  21. World Health Organisation Technical Report No. 482, “Evaluation and testing of drugs for mutagenicity: Principles and problems”. Geneva 1971.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • B. J. Dean
    • 1
  1. 1.Tunstall LaboratoryShell Research Ltd.SittingbourneEngland

Personalised recommendations