Journal of comparative physiology

, Volume 145, Issue 2, pp 139–152 | Cite as

Distribution and properties of sex-specific photoreceptors in the flyMusca domestica

  • R. C. Hardie
  • N. Franceschini
  • W. Ribi
  • K. Kirschfeld


  1. 1.

    In male houseflies (Musca domestica) the frontal dorsal region of the eye contains a unique class of central rhabdomere (R7/8) not found in other eye regions or in female flies (Fig. 1). The rhabdomeres may be recognised in vivo by their red autofluorescence, and are called here 7r and 8r respectively.

  2. 2.

    Difference spectra of 7r rhabdomeres, measured by microspectrophotometry of single rhabdomeres are indistinguishable from those of R1–6 (Fig. 2).

  3. 3.

    Intracellular recordings coupled with dye injections have established that: a) 7r cells are indistinguishable from the peripheral photoreceptors R1–6, at least with respect to spectral, angular and absolute sensitivities, response waveform and noise characteristics (Figs. 4, 5; Table 1); b) 8r cells however are clearly distinguishable by virtue of their spectral sensitivity (Fig. 6), noise characteristics and response waveform (Fig. 5).

  4. 4.

    Axonal profiles from cells stained intracellularly with the dye Lucifer yellow (Fig. 9) show that: a) 7r cells do not project to the medulla but terminate in the upper region of the lamina cartridge layer where they also project out one or more lateral branches; b) 8r cells project long axons through to the medulla.

  5. 5.

    Electron microscopic examinations of cells initially identified by their autofluorescence indicate that 7r cells approximate many features of R1–6 cells, including cell body, rhabdomere and axonal diameters. In these respects 8r cells differ and show the characteristic morphology of other R7 and R8 cells (Fig. 8, Table 2).



Lateral Branch Electron Microscopic Examination Intracellular Recording Noise Characteristic Musca Domestica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


R1–6 andR7/8

classes of retinula cells in each fly ommatidium, R1–6 having peripherally, and R7/8 centrally located rhabdomeres

7y, 7p, 7r and8y, 8p, 8r

subclasses of retinula cells R7 and R8




polarisation sensitivity


prolonged depolarising afterpotential

APS 50

axial peak sensitivity at 50% peak response level


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernard GD, Stavenga DG (1979) Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J Comp Physiol 134:95–107Google Scholar
  2. Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the flyMusca domestica. Z Zellforsch 118:369–409Google Scholar
  3. Braitenberg V (1967) Patterns of projection in the visual system of the fly. I Retina-lamina projections. Exp Brain Res 3:271–298Google Scholar
  4. Burkhardt D, Motte I de la (1972) Electrophysiological studies on the eyes of Diptera, Mecoptera and Hymenoptera. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 147–153Google Scholar
  5. Cajal SR, Sanchez D (1915) Contributión al conicimiento de los centres nerviosos de los insectos. Parte I. rétina y centras ópticos. Trab Lab Invest Biol Univ (Madrid) 13:1–164Google Scholar
  6. Dietrich W (1909) Die Facettenaugen der Dipteren. Z Wiss Zool 92:465–539Google Scholar
  7. Franceschini N, Hardie RC (1980)In vivo recovery of dye-injected photoreceptor cells in the retina of the flyMusca domestica. J Physiol (Lond) 301:59Google Scholar
  8. Franceschini N, Kirschfeld K (1971) Etude optiquein vivo desélements photorécepteurs dans l'oeil composé deDrosophila. Kybernetik 8:1–13Google Scholar
  9. Franceschini N, Kirschfeld K (1976) Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères. Biol Cybern 21:181–203Google Scholar
  10. Franceschini N, Hardie RC, Ribi W, Kirschfeld K (1981a) Sexual dimorphism in a photoreceptor. Nature 291:241–244Google Scholar
  11. Franceschini N, Kirschfeld K, Minke B (1981b) Fluorescence of photoreceptor cells observed in vivo. Science 213:1264–1266Google Scholar
  12. Gogala M (1967) Die spektrale Empfindlichkeit der Doppelaugen vonAscalaphus macaronius Scop. (Neutroptera, Ascalaphidae). Z Vergl Physiol 57:232–243Google Scholar
  13. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/ 6A. Springer, Berlin Heidelberg New York, pp 145–224Google Scholar
  14. Hardie RC (1977) Electrophysiological properties of R7 and R8 in dipteran retina. Z Naturforsch 32c:887–889Google Scholar
  15. Hardie RC (1979) Electrophysiological analysis of fly retina. I. Comparative properties of R1–6 and R7 and 8. J Comp Physiol 129:19–33Google Scholar
  16. Hardie RC, Franceschini N, McIntyre PD (1979) Electrophysiological analysis of fly retina. II. Spectral and polarisation sensitivity in R7 and R8. J Comp Physiol 133:23–39Google Scholar
  17. Hausen K, Strausfeld N (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc Lond [Biol] 208:57–71Google Scholar
  18. Herrling PL (1975) Topographische Untersuchung zur funktionellen Anatomie der Retina vonCataglyphis bicolor (Formicidae, Hymenoptera). Dissertation, Universität ZürichGoogle Scholar
  19. Horridge GA (1978) The separation of visual axes in apposition compound eyes. Philos Trans R Soc Lond [Biol] 285:1–59Google Scholar
  20. Horridge GA, McLean M (1978) The dorsal eye of the mayflyAtalophlebia (Ephemeroptera). Proc R Soc Lond [Biol] 200:137–150Google Scholar
  21. Kirschfeld K (1979) The function of photostable pigments in fly photoreceptors. Biophys Struct Mech 5:117–128Google Scholar
  22. Kirschfeld K, Vogt K (1980) Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 67:516Google Scholar
  23. Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitising pigment in fly photoreceptors. Nature 269:386–390Google Scholar
  24. Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J Comp Physiol 125:275–284Google Scholar
  25. Labhart T (1980) Specialised photoreceptors at the dorsal rim of the honeybee's compound eye: Polarisation and angular sensitivity. J Comp Physiol 141:19–30Google Scholar
  26. Land MF, Collett TS (1974) Chasing behaviour of house-flies (Fannia canicularis): a description and analysis. J Comp Physiol 89:331–357Google Scholar
  27. Laughlin SB (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J Comp Physiol 111:221–247Google Scholar
  28. Laughlin SB, McGiness S (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res 188:427–447Google Scholar
  29. Lisman JE, Brown JE (1972) The effect of intracellular iontophoretic injection of calcium and sodium ions on the light response ofLimulus ventral photoreceptors. J Gen Physiol 59:701–719Google Scholar
  30. McIntyre P, Kirschfeld K (1981) Absorption properties of a photostable Pigment (P456) in rhabdomere 7 of the fly. J Comp Physiol 143:3–15Google Scholar
  31. Muijser H (1979) The receptor potential of retinular cells of the blowflyCalliphora: the role of sodium, potassium and calcium ions. J Comp Physiol 132:87–95Google Scholar
  32. Praagh JP van, Ribi W, Wehrhahn C, Wittmann D (1980) Drone bees fixate the queen with the dorsal frontal part of their compound eyes. J Comp Physiol 136:263–266Google Scholar
  33. Ribi W (1976) The first optic ganglion of the bee. II. Cell Tissue Res 171:359–373Google Scholar
  34. Ribi WA (1979) Coloured screening pigments cause red eye glow hue in pierid butterflies. J Comp Physiol 132:1–9Google Scholar
  35. Schinz RH (1975) Structural specialisation in the dorsal retina of the beeApis mellifera. Cell Tissue Res 162:23–34Google Scholar
  36. Smola U, Meffert P (1979) The spectral sensitivity of the visual cells R7 and R8 in the eye of the blowflyCalliphora erythrocephala. J Comp Physiol 133:41–52Google Scholar
  37. Snyder AW (1973) Polarisation sensitivity of individual retinula cells. J Comp Physiol 83:331–360Google Scholar
  38. Snyder AW, Pask C (1973) Spectral sensitivity of dipteran retinula cells. J Comp Physiol 84:59–76Google Scholar
  39. Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759Google Scholar
  40. Trujillo-Cenóz O, Melamed J (1966) Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: Bernhard CG (ed) The functional organisation of the compound eye. Pergamon Press, Oxford New York, pp 339–362Google Scholar
  41. Wada S (1974) Spezielle randzonale Ommatidien vonCalliphora erythrocephala Meig. (Diptera, Calliphoridae): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int J Insect Morphol Embryol 3:397–424Google Scholar
  42. Wehrhahn C (1979) Sex-specific differences in the chasing behaviour of free flying houseflies (Musca). Biol Cybern 32:239–241Google Scholar
  43. Zeil J (1979) A new kind of neural superposition eye: the compound eye of male Bibionidae. Nature 278:249–250Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. C. Hardie
    • 1
  • N. Franceschini
    • 1
  • W. Ribi
    • 1
  • K. Kirschfeld
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations