Journal of Comparative Physiology A

, Volume 161, Issue 5, pp 645–658 | Cite as

Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets

  • Dan -Eric Nilsson
  • Thomas Labhart
  • Eric Meyer


Anatomically and physiologically specialized ommatidia at the dorsal rim of insect compound eyes play a key role in polarization vision. In this eye region the polarization sensitivity (PS) of photoreceptors is significantly higher than elsewhere in the eye. We have compared the optical properties of the dorsal rim area and normal eye region of desert ants,Cataglyphis bicolor, and field crickets,Gryllus campestris. The objective was to find the cause of the enhanced PS in the dorsal rim area of eyes where the situation is not complicated by rhabdom twist. Three pieces of information were derived:
  1. 1.

    From qualitative optical experiments we conclude that rhabdom waveguide effects do not enhance or reduce PS. Quantitative measurements of depolarization in the retina demonstrate unambiguously that all parts of the eye retain the state of polarization very well through the full retinal depth. The factor limiting inherent PS of receptor cells must thus be the dichroic absorption of the rhabdomeres, which is determined by the dichroic ratio of microvilli and the degree of microvillar alignment.

  2. 2.

    A theoretical model of light propagating in a dichroic rhabdom reveals a strong influence of random microvillar misalignment on PS. Using measured values of misalignment, we predict differences in PS between dorsal rim and unspecialized retina that explain previous electrophysiological results.

  3. 3.

    Theoretical modelling also demonstrates the advantage of having a predominant microvillar direction in a rhabdom (as is the case in theCataglyphis dorsal rim).



Retina Optical Experiment Polarization Sensitivity Field Cricket Electrophysiological Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



polarization sensitivity


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aepli F, Labhart T, Meyer EP (1985) Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects. Cell Tissue Res 239:19–24Google Scholar
  2. Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol (in press)Google Scholar
  3. Burghause FMHR (1979) Die strukturelle Spezialisierung des dorsalen Augenteils der Grillen (Orthoptera, Grylloidea). Zool Jb Physiol 83:502–525Google Scholar
  4. Doujak FE (1984) Electrophysiological measurement of photoreceptor membrane dichroism and polarization sensitivity in a grapsid crab. J Comp Physiol A 154:597–605Google Scholar
  5. Fent K (1985) Himmelsorientierung bei der WüstenameiseCataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Dissertation, Universität ZürichGoogle Scholar
  6. Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125Google Scholar
  7. Gloge D (1971) Weakly guiding fibers. Appl Opt 10:2252–2258Google Scholar
  8. Goldsmith TH (1975) The polarization sensitivity — dichroic absorption paradox in arthropod photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 392–409Google Scholar
  9. Hardie RC (1984) Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora. J Comp Physiol A 154:157–165Google Scholar
  10. Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154:761–771Google Scholar
  11. Herrling PL (1976) Regional distribution of three ultrastructural retinula types in the retina ofCataglyphis bicolor Fabr. (Formicidae, Hymenoptera). Cell Tissue Res 169:247–266Google Scholar
  12. Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterflyPapilio. J Comp Physiol 150:271–294Google Scholar
  13. Israelachvili JN, Wilson M (1976) Absorption characteristics of oriented photopigments in microvilli. Biol Cybern 21:9–15Google Scholar
  14. Kolb G (1986) Retinal ultrastructure in the dorsal rim and large dorsal area of the eye ofAglais urticae (Lepidoptera). Zoomorphology 106:244–246Google Scholar
  15. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: polarizational and angular sensitivity. J Comp Physiol 141:19–30Google Scholar
  16. Labhart T (1985) Polarisationsempfindliche Interneuronen im Sehsystem der Grille. Deutsche Neurobiologentagung. Abstracts, S 137Google Scholar
  17. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant,Cataglyphis bicolor. J Comp Physiol A 158:1–7Google Scholar
  18. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket's compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296Google Scholar
  19. McIntyre P, Snyder AW (1978) Light propagation in twisted anisotropic media: Application to photoreceptors. J Opt Soc Am 68:149–157Google Scholar
  20. Meinecke CC (1981) The fine structure of the compound eye of the African armyworm moth.Spodoptera exempta Walk. (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347Google Scholar
  21. Menzel R, Blakers R (1976) Colour receptors in the bee eye — morphology and spectral sensitivity. J Comp Physiol 108:11–33Google Scholar
  22. Menzel R, Snyder AW (1974) Polarized light detection in the bee,Apis mellifera. J Comp Physiol 88:247–270Google Scholar
  23. Meyer EP, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee's compound eye. Cell Tissue Res 216:491–501Google Scholar
  24. Nilsson D-E, Land MF, Howard J (1984) Afocal apposition optics in butterfly eyes. Nature 312:561–563Google Scholar
  25. Nilsson D-E, Land MF, Howard J (1987) Optics of the butterfly eye. J Comp Physiol (in press)Google Scholar
  26. Räber WF (1979) Retinatopographie and Sehfeldtopologie des Komplexauges vonCataglyphis bicolor (Formicidae, Hymenoptera) und einiger verwandten Formiciden-Arten. Dissertation, Universität ZürichGoogle Scholar
  27. Rossel S, Wehner R (1984) Celestial orientation in bees: the use of spectral cues. J Comp Physiol A 155:605–613Google Scholar
  28. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–132Google Scholar
  29. Schinz RH (1975) Structural specialization in the dorsal retina of the bee,Apis mellifera. Cell Tissue Res 162:23–34Google Scholar
  30. Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255:480–483Google Scholar
  31. Snitzer E, Osterberg H (1961) Observed dielectric waveguide modes in the visible spectrum. J Opt Soc Am 51:499–505Google Scholar
  32. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, London New York, p 734Google Scholar
  33. Snyder AW, Rühl F (1983) New single-mode, single-polarization optical fibre. Electron Lett 19:185–186Google Scholar
  34. Sommer EW (1979) Untersuchungen zur topographischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene,Apis mellifera (Hymenoptera). Dissertation, Universität ZürichGoogle Scholar
  35. Stowe S (1983) A theoretical explanation of intensity-independent variation of polarization sensitivity in crustacean retinula cells. J Comp Physiol 153:435–441Google Scholar
  36. Wada S (1974) Spezielle randzonale Ommatidien der Fliegen (Diptera, Brachycera): Architektur und Verteilung in den Komplexaugen. Z Morphol Tiere 77:87–125Google Scholar
  37. Wehner R (1982) Himmelsnavigation bei Insekten: Neurophysiologie und Verhalten. Neujahrsblatt Naturforsch Ges ZürichGoogle Scholar
  38. Wehner R, Bernard GD (1980) Intracellular optical physiology II. Polarization sensitivity. J Comp Physiol 137:205–214Google Scholar
  39. Wehner R, Rossel S (1985) The bee's celestial compass — a case study in behavioural neurobiology. In: Hölldobler B, Lindauer M (eds) Experimental behavioural ecology and neurobiology. Fischer, Stuttgart New York, pp 11–53Google Scholar
  40. Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioral evidence. Physiol Entomol 10:337–349Google Scholar
  41. Wehner R, Bernard GD, Geiger E (1975) Twisted and nontwisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245Google Scholar
  42. Wunderer H, Smola U (1982) Fine structure of ommatidia at the dorsal eye margin ofCalliphora erythrocephala Meigen (Diptera, Calliphoridae): An eye region specialized for the detection of polarized light. Int J Insect Morphol Embryol 11:25–38Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Dan -Eric Nilsson
    • 1
  • Thomas Labhart
    • 2
  • Eric Meyer
    • 2
  1. 1.Department of ZoologyUniversity of LundLundSweden
  2. 2.Zoologisches Institut der Universität ZürichZürichSwitzerland

Personalised recommendations