Journal of Comparative Physiology A

, Volume 159, Issue 3, pp 297–310 | Cite as

Acoustic communication in an electric fish,Pollimyrus isidori (Mormyridae)

  • John D. Crawford
  • Mary Hagedorn
  • Carl D. Hopkins
Article

Summary

It has been known since von Frisch's work in the 1930's that mormyrid electric fishes are quite sensitive to sound. We now describe a repertoire of natural sounds produced by the mormyrid,Pollimyrus isidori, during breeding and aggression; reception of communication sounds is probably a major function for mormyrid audition.
  1. 1.

    In aquaria,Pollimyrus isidori produce ‘grunts’, ‘moans’, ‘growls’, ‘pops’ and ‘hoots’ at various phases during nesting, courtship, and territory defense.

     
  2. 2.

    All five sounds are produced primarily at night. Territorial males produce grunts, moans and growls during courtship. Vocalizing is stimulated by the presence of a gravid female on the male's territory and decreases with the onset of spawning. Hoots and pops are given during agonistic behavior.

     
  3. 3.

    Grunts are bursts of acoustic pulses, stereotyped for an individual, with the potential as individual signatures.

     
  4. 4.

    The electric organ is silent during grunts and moans and is discharged at a reduced rate during growls.

     
  5. 5.

    The courtship and spawning ofPollimyrus isidori is described.

     

Keywords

Major Function Gravid Female Agonistic Behavior Acoustic Pulse Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

EOD

electric organ discharge

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge waveform. Science 220:971–974Google Scholar
  2. Bass AH, Hopkins CD (1985) Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J Comp Physiol A 156:587–604Google Scholar
  3. Bell CC (1986) Electroreception in mormyrid fish. Central Physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 423–452Google Scholar
  4. Bell CC, Szabo T (1986) Electroreception in mormyrid fish. Central Anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 315–421Google Scholar
  5. Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338Google Scholar
  6. Birkholz J (1969) Zufällige Nachzucht beiPetrocephalus bovei. Das Aquarium 3:201–203Google Scholar
  7. Birkholz J (1970) Nachwuchs beiPetrocephalus bovei. Das Aquarium 4:340–342Google Scholar
  8. Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol 147:511–522Google Scholar
  9. Cohen MJ, Winn HE (1967) Electrophysiological observations on hearing and sound production in the fish,Porichthys notatus. J Exp Zool 165:355–370Google Scholar
  10. Crawford JD, Hagedorn MM, Hopkins CD (1985) Acoustic song in an electric fish. Neurosci Abstr 11:270Google Scholar
  11. Cuvier G, Valenciennes A (1946) Histoire naturelle des poissons. 19:214–286Google Scholar
  12. Dijkgraaf S (1947) Ein Töne erzeugender Fisch im Neapler Aquarium. Experientia 3:493–494Google Scholar
  13. Emlen ST, Oring LW (1977) Ecology, sexual selection and the evolution of mating systems. Science 197:215–223Google Scholar
  14. Fine M, Winn HE, Olla BL (1977) Communication in fishes. In: Sebeok TA (ed) How animals communicate. Indiana University Press, Bloomington, pp 472–518Google Scholar
  15. Fernald R (1975) Fast body turns in a cichlid fish. Nature 258:228–229Google Scholar
  16. Ficken RW, Tienhoven A van, Ficken MS, Sibley FC (1960) Effect of visual and vocal stimuli on breeding in the budgerigar (Melopsittacus undulatus). Animal Behav 8:104–106Google Scholar
  17. Frisch K von (1938a) Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Z Vergl Physiol 25:703–747Google Scholar
  18. Frisch K von (1938b) The sense of hearing in fish. Nature 141:8–11Google Scholar
  19. Gerald JW (1971) Sound production during courtship in six species of sun fish (Centrarchidae). Evolution 25:75–87Google Scholar
  20. Hagedorn M (1986) The ecology, courtship and mating of gymnotiform electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 497–525Google Scholar
  21. Hagedorn M, Heiligenberg W (1985) Court and spark: Electric signals in the courtship and mating of gymnotoid fish. Animal Behav 33:254–265Google Scholar
  22. Hawkins AD, Maclennan DN (1976) An acoustic tank for hearing studies on fish. In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 149–170Google Scholar
  23. Hawkins AD, Myrberg AA (1983) Hearing and sound communication under water. In: Lewis B (ed) Bioacoustics. Academic Press, New York, pp 347–406Google Scholar
  24. Heusinger CF von (1826) Bemerkungen über das Gehörwerkzeug desMormyrus cyprinoides, Gastroblecus compressus undPimelodus synodontis. Arch Anat Physiol Meckel 1:324–327Google Scholar
  25. Hirata NR, Fernald RD (1975) Non-intentional sound production in cichlid fish (Haplochromis burtoni, Gunther). Experientia 31:299–300Google Scholar
  26. Hopkins CD (1986) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 527–576Google Scholar
  27. Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212:85–87Google Scholar
  28. Horch K, Salmon M (1973) Adaptations to the acoustic environment by the squirrelfishes,Myripristis violaceus andM. pralinius. Mar Behav Physiol 2:121–139Google Scholar
  29. Iles RB (1960) External sexual differences and their significance inMormyrus kannume Forskal 1775. Nature 188:516Google Scholar
  30. Kalmijn A (1986) Hydrodynamic and acoustic detection in aquatic vertebrates. In: Atema J, Fay R, Popper AN, Tavolga WN (eds) Proc Conference Mote Marine Laboratory, Springer, Berlin Heidelberg New York (in press)Google Scholar
  31. Kirschbaum F (1975) Environmental factors control the periodical reproduction of tropical electric fish. Experientia 31:1159–1160Google Scholar
  32. Kirschbaum F (1979) Reproduction of the weakly electric fishEigenmannia virescens (Rhamphichthyidae, Teleostei) in captivity. I. Control of gonadal recrudescence and regression by environmental factors. Behav Ecol Sociobiol 4:331–355Google Scholar
  33. Kirschbaum F (1982) Reproduction of the mormyridPollimyrus isidori in captivity. Fourth Congress of European Ichthyologists. Hamburg, Abstract 149Google Scholar
  34. Kirschbaum F (1984) Reproduction of weakly electric teleosts: just another example of convergent development? Environ Biol Fishes 10:3–14Google Scholar
  35. Kirschbaum F, Westby GWM (1975) Development of the electric discharge in mormyrid and gymnotid fish (Marcusenius sp. andEigenmannia virescens). Experientia 31:1290–1293Google Scholar
  36. Kramer B, Tautz J, Markl H (1981) The EOD sound response of weakly electric fish. J Comp Physiol 143:435–441Google Scholar
  37. Lanzing WJR (1974) Sound production in the cichlidTilapia mossambica Peters. J Fish Biol 6:341–347Google Scholar
  38. Li SK, Owings DH (1978a) Sexual selection in the three-spined stickelback. I. Normative observations. Z Tierpsychol 46:359–371Google Scholar
  39. Li SK, Owings DH (1978a) Sexual selection in the three-spined stickelback. II. Nest raiding during the courtship phase. Behaviour 64:298–304Google Scholar
  40. Lücker H, Kramer B (1981) Development of a sex difference in the preferred latency in the weakly electric fish,Pollimyrus isidori (Cuvier et Valenciennes) (Mormyridae, Teleostei). Behav Ecol Sociobiol 9:103–109Google Scholar
  41. McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish,Gnathonemus petersii. J Comp Physiol A 155:753–761Google Scholar
  42. Myrberg AA (1972) Using sound to influence the behavior of free-ranging marine animals. In: Winn HE, Olla BL (eds) Behavior of marine animals, vol. 2, Plenum Press, New York, pp 435–468Google Scholar
  43. Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 395–426Google Scholar
  44. Myrberg AA, Riggio R (1985) Acoustically mediated individual recognition by a coral reef fish (Pomacentrus partitus). Animal Behav 33:411–416Google Scholar
  45. Myrberg AA, Spanier E, Ha S (1978) Temporal patterning in acoustical communication. In: Reese ES, Lighter FJ (eds) Contrast in behavior. John Wiley, New York, pp 137–179Google Scholar
  46. Orts S (1967) Contribution à l'anatomie comparé et à la systématique des Mormyroides. Mém Acad R Sci Outre-mer (Brussels) (Cl Sci Nat Med 8°) (NS) 17:1–90Google Scholar
  47. Parvulescu A (1966) The acoustics of small tanks. In: Tavolga WN (ed) Marine bioacoustics, vol 2. Pergamon Press, London, pp 7–13Google Scholar
  48. Rigley L, Marshall J (1973) Sound production by the elephantnose fish,Gnathonemus petersii (Pisces, Mormyridae). Copeia 1973:134–135Google Scholar
  49. Schneider H (1967) Morphology and physiology of sound-producing mechanisms in teleost fishes. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, Oxford, pp 135–158Google Scholar
  50. Schwarz A (1974) Sound production and associated behavior in a cichlid fish,Cichlasoma centrarchus. Z Tierpsychol 35:147–156Google Scholar
  51. Spanier E (1979) Aspects of species recognition by sound in four species of damselfishes, genusEupomacentrus (Pisces: Pomcentriae).Google Scholar
  52. Stipetic E (1939) Über das Gehörorgan der Mormyriden. Z Vergl Physiol 26:740–752Google Scholar
  53. Tavolga WN (1956) Visual, chemical and sound stimuli as cues in the sex discriminatory behavior of the gobiid fishBathygobius soporator. Zoologica 41:49–64Google Scholar
  54. Tavolga WN (1964) Sonic characteristics and mechanisms in marine fishes. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, Oxford, pp 195–211Google Scholar
  55. Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic Press, New York, pp 135–205Google Scholar
  56. Tower RW (1908) The production of sound in the drumfishes, the sea robin and the toadfish. Ann NY Acad Sci 18:149–180Google Scholar
  57. Werns S, Howland HC (1976) Size and allometry of the saccular air bladder ofGnathonemus petersii (Pisces: Mormyridae): Implications for hearing. Copeia 1976:200–202Google Scholar
  58. Westby GW, Kirschbaum F (1982) Sex differences in the waveform of the pulse-type electric fish,Pollimyrus isidori (Mormyridae) J Comp Physiol 145:399–403Google Scholar
  59. Wilson EO, Bossert WH (1963) Chemical communication amongst animals. Rec Prog Hormone Res 19:673–716Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • John D. Crawford
    • 1
  • Mary Hagedorn
    • 1
  • Carl D. Hopkins
    • 1
  1. 1.Section of Neurobiology and Behavior, Seeley Mudd HallCornell UniversityIthacaUSA

Personalised recommendations