Journal of Comparative Physiology A

, Volume 163, Issue 5, pp 671–676 | Cite as

Temperature compensation of circasemilunar timing in the intertidal insectClunio

  • Dietrich Neumann


In cultures of a subtropical population of the one-hour midgeClunio tsushimensis, semilunar rhythms of emergence with a period of 15 days can be entrained by using artificial moonlight cycles of 30 days in otherwise invariant 24-h lightdark cycles (0.3 lux over four successive nights every 30 days of LD 12∶12). After changing to an invariant photoperiod (LD 12∶12 without the moonlight programme) or even to continuous darkness, freerunning semilunar rhythms were observed for up to 3 months using cultures of a mixed age structure containing all larval instars. The mean period was 14.2 days at 19 °C, i.e. clearly shorter than under entraining conditions (14.7 days in nature, 15.0 days with the artificial zeitgeber). In the range 14°–24 °C (corresponding to the mean seawater temperatures at the place of origin in winter and summer) there was only slight temperature dependence. The Q10 of the circasemilunar period, however, was not significantly different from 1.0. In continuous darkness the freerunning period was about 15.2 days. Both experiments provide supporting evidence for the existence of a temperature-compensated circasemilunar oscillator acting as an endogenous clock mechanism controlling the timing of imaginal disc formation and pupation in the intertidal chironomid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschoff J (1979) Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49:225–249Google Scholar
  2. Blake GM (1959) Control of diapause by an ‘internal clock’ inAnthrenus verbasci (L.) (Col., Dermestidae). Nature 183:126–127Google Scholar
  3. Bünning E (1958) Über den Temperatureinfluß auf die endogene Tagesperiodik, besonders beiPeriplaneta americana. Biol Zbl 77:141–152Google Scholar
  4. Bünning E, Müller D (1961) Wie messen Organismen lunare Zyklen? Z Naturforsch 16b:391–395Google Scholar
  5. Franke HD (1985) On a clocklike mechanism timing lunarrhythmic reproduction inTyposyllis prolifera (Polychaeta). J Comp Physiol A 156:553–561Google Scholar
  6. Hauenschild C (1960) Lunar perodicity. Cold Spring Harbor Symp Quant Biol 25:491–497Google Scholar
  7. Krüger M, Neumann D (1983) Die Temperaturabhängigkeit semilunarer und diurnaler Schlüpfrhythmen bei der intertidalen MückeClunio marinus (Diptera, Chironomidae). Helgol Meeresunters 36:427–464Google Scholar
  8. Neumann D (1966) Die lunare und tägliche Schlüpfperiodik der MückeClunio. Steuerung und Abstimmung auf die Gezeitenperiodik. Z Vergl Physiol 53:1–61Google Scholar
  9. Neumann D (1981) Tidal and lunar rhythms. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 351–380 (Handbook of behavioral neurobiology, vol 4)Google Scholar
  10. Neumann D (1985) Photoperiodic influences of the moon on behavioral and developmental performances of organisms. Int J Biometeorol 29 [Suppl 2]:165–177Google Scholar
  11. Neumann D (1986) Life cycle strategies of an intertidal midge between subtropic and arctic latitudes. In: Taylor F, Karban R (eds) The evolution of insect life cycles. Springer, Berlin Heidelberg New York, p 3–19Google Scholar
  12. Oka H, Hashimoto H (1959) Lunare Periodizität in der Fortpflanzung einer pazifischen Art vonClunio (Diptera, Chironomidae). Biol Zbl 78:545–559Google Scholar
  13. Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time inDrosophila. Proc Natl Acad Sci USA 40:1018–1029Google Scholar
  14. Pittendrigh CS (1981) Circadian systems: General perspective. In: Aschoff J (ed) Biological rhythms. (Handbook of behavioral neurobiology, vol 4). Plenum, New York, pp 57–80Google Scholar
  15. Pittendrigh CS, Calderola PC (1973) General homeostasis of the frequency of circadian oscillations. Proc Natl Acad Sci 70:2697–2701Google Scholar
  16. Sweeney BM, Hastings JW (1960) Effects of temperature upon diurnal rhythms. Cold Spring Harbor Symp Quant Biol 25:87–104Google Scholar
  17. Truman JW (1972) Circadian rhythms and physiology with special reference to neuroendocrine processes in insects. In: Bierhuizen JF et al. (orgs) Proceedings of the international symposium on circadian rhythmicity, Centre Agricultural Publishing and Documentation, Wageningen, pp 111–135Google Scholar
  18. Wülker W, Götz P (1968) Die Verwendung der Imaginalscheiben zur Bestimmung des Entwicklungszustandes vonChironomus-Larven (Dipt.) Z Morphol Tiere 62:363–388Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dietrich Neumann
    • 1
  1. 1.Lehrstuhl für Physiologische ÖkologieZoologisches Institut der UniversitätKöln 41Germany

Personalised recommendations