Journal of Comparative Physiology A

, Volume 163, Issue 5, pp 565–584 | Cite as

Busy bees need rest, too

Behavioural and electromyographical sleep signs in honeybees
  • Walter Kaiser
Article

Summary

  1. 1.

    The behaviour of isolated individual forager honeybees during the night has been investigated with a variety of experimental methods. Prolonged rest in these diurnal insects is accompanied by: reduced muscle tone (Figs. 1, 6, 10–12), decreased motility (Figs. 2, 3, Table 1), lowered body temperature (Figs. 7, 8) and raised reaction threshold (Fig. 9). These phenomena strongly resemble four characteristic features of sleep in humans, mammals and birds. It is thus very likely that the profound rest which forager bees experience at night is sleep. This assumption is further supported by the results of previous investigations of visual interneurones in the bee.

     
  2. 2.

    The antennae of sleeping bees manifest characteristic postural constellations (Fig. 6). High reaction thresholds are associated with particular antennal positions.

     
  3. 3.

    The total sleep time (duration of antennal immobility plus duration of small antennal movements) in 24 h for two bees was 7.6 h and 4.9 h (Table 1).

     
  4. 4.

    Bees which rest in a hive at night also display phenomena which have been encountered during the laboratory investigations.

     
  5. 5.

    Sleep in mammals is an active, controlled process; the same seems to be true of sleep in honeybees (Figs. 3, 4). Unlike mammals, bees experience their deepest sleep towards the end of the sleep phase (Figs. 3, 9, 10, 12).

     

Abbreviations

EEG

electroencephalogram

EMG

electromyogram

REM

rapid eye movement

IR

infrared radiation

LD

alternating light (L) and darkness (D)

LL

continuous light

DD

continuous darkness

SWS

slow wave sleep

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen FO (1968) Sleep in moths and its dependence on the frequency of stimulation inAnagasta kuehniella. Opusc Entomol 33:15–24Google Scholar
  2. Åkerstedt T, Gillberg M (1986) Sleep duration and the power spectral density of the EEG. Electroencephalogr Clin Neurophysiol 64:119–122Google Scholar
  3. Benoit O, Foret J, Bouard G (1983) The time course of slow wave sleep and REM sleep in habitual long and short sleepers: effect of prior wakefulness. Human Neurobiol 2:91–96Google Scholar
  4. Bösebeck H, Kaiser W (1987) Das Verhalten von Honigbienen nach Schlafentzug. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Proc 15th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 206Google Scholar
  5. Bonnet M (1982) Performance during sleep. In: Webb WB (ed) Biological rhythms, sleep and performance. Wiley, Chichester New York, pp 205–237Google Scholar
  6. Borbély AA (1982) A two process model of sleep regulation. Human Neurobiol 1:195–204Google Scholar
  7. Borbély AA (1984) Das Geheimnis des Schlafs: neue Wege und Erkenntnisse der Forschung. Deutsche Verlags-Anstalt, StuttgartGoogle Scholar
  8. Borbély AA, Neuhaus HU (1979) Sleep deprivation: Effects on sleep and EEG in the rat. J Comp Physiol 133:71–87Google Scholar
  9. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effects on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–493Google Scholar
  10. Burkhardt D, Motte I de la (1983) Stielaugenfliegen. Biol Uns Zeit 13:97–103Google Scholar
  11. Daan S, Beersma DGM, Borbély AA (1984) Timing of human sleep: recovery processes gated by a circadian pacemaker. Am J Physiol 246:R161-R178Google Scholar
  12. Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478Google Scholar
  13. Dewasmes G, Cohen-Adad F, Koubi H, Le Maho Y (1985) Polygraphic and behavioural study of sleep in geese: Existence of nuchal atonia during paradoxical sleep. Physiol Behav 35:67–73Google Scholar
  14. Dijk DJ, Beersma DGM, Daan S, Bloem GM, Hoofdakker RH van den (1987) Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur Arch Psychiatr Neurol Sci 236:323–328Google Scholar
  15. Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt vonApis mellifica. Z Vergl Physiol 43:305–335Google Scholar
  16. Esch H (1964) Über den Zusammenhang zwischen Temperatur, Aktionspotentialen und Thoraxbewegungen bei der Honigbiene (Apis mellifica L.). Z Vergl Physiol 48:547–551Google Scholar
  17. Fiebrig K (1912) Schlafende Insekten. Jena Z Naturwiss 48 (NF41):315–364Google Scholar
  18. Frisch K von (1918) Beitrag zur Kenntnis sozialer Instinkte bei solitären Bienen. Biol Zentralbl 38:183–188Google Scholar
  19. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Gaillard J-M (1985) Neurochemical regulation of the states of alertness. Ann Clin Res 17:175–184Google Scholar
  21. Grziwa J (1961) Arbeiten die Bienen auch nachts? Imkerfreund 16:161–163Google Scholar
  22. Hartung I, Elpelt B, Klösener K-H (1982) Statistik. Oldenbourg, MünchenGoogle Scholar
  23. Haufe WO (1963) Ethological and statistical aspects of a quantal response in mosquitoes to environmental stimuli. Behaviour 20:221–241Google Scholar
  24. Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55Google Scholar
  25. Heran H (1952) Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Z Vergl Physiol 34:179–206Google Scholar
  26. Herter K (1953) Der Temperatursinn der Insekten. Duncker & Humblot, BerlinGoogle Scholar
  27. Hess WR (1926) Die Temperaturregulierung im Bienenvolk. Z Vergl Physiol 4:465–487Google Scholar
  28. Hoffmann RW (1937) Der Insektenschlaf als reflektorische Immobilisation. Naturwissenschaften 25:359–366Google Scholar
  29. Horne JA (1983) Mammalian sleep function with particular reference to man. In: Mayes A (ed) Sleep mechanisms and functions in humans and animals — an evolutionary perspective. Van Nostrand Reinhold (UK), Wokingham, pp 262–312Google Scholar
  30. Jacobson A, Kales A, Lehmann D, Hoedemaker FS (1964) Muscle tonus in human subjects during sleep and dreaming. Exp Neurol 10:418–424Google Scholar
  31. Jander JP (1987) Unregelmäßigkeiten des Herzschlagrhythmus: ein weiteres Merkmal des Schlafes von Honigbienen. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Proc 15th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 205Google Scholar
  32. Kaiser W (1983) Effects of non-visual and circadian inputs to visual interneurones in the honey bee. In: Horn E (ed) Multimodal convergences in sensory systems (Fortschr Zool vol 28). Gustav Fischer, Stuttgart New York, pp 149–166Google Scholar
  33. Kaiser W (1984) Sleep in insects? — Behavioural and neurophysiological findings in honey bees. Verh Dtsch Zool Ges 77:297Google Scholar
  34. Kaiser W (1985) Comparative neurobiology of sleep — the honey bee model. In: Koella WP, Rüther E, Schulz H (eds) Sleep '84. Gustav Fischer, Stuttgart New York, pp 225–227Google Scholar
  35. Kaiser W, Steiner-Kaiser J (1983) Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301:707–709Google Scholar
  36. Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol 148:65–76Google Scholar
  37. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345Google Scholar
  38. Lindauer M, Nedel JO (1959) Ein Schweresinnesorgan der Honigbiene. Z Vergl Physiol 42:334–364Google Scholar
  39. Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–561Google Scholar
  40. Markl H (1966) Peripheres Nervensystem und Muskulatur im Thorax der Arbeiterin vonApis mellifica L.,Formica polyctena Foerster undVespa vulgaris L. und der Grundplan der Innervierung des Insektenthorax. Zool Jb Anat 83:107–184Google Scholar
  41. Mayes A (ed) (1983) Sleep mechanisms and functions in humans and animals — an evolutionary perspective. Van Nostrand Reinhold (UK), WokinghamGoogle Scholar
  42. Meddis R (1983) The evolution of sleep. In: Mayes A (ed) Sleep mechanisms and functions in humans and animals — an evolutionary perspective. Van Nostrand Reinhold (UK), Wokingham, pp 57–106Google Scholar
  43. Michelson E (1897) Untersuchungen über die Tiefe des Schlafes. In: Kraepelin E (ed) Psychologische Arbeiten II. W. Engelmann, Leipzig, pp 84–117Google Scholar
  44. Moore D, Rankin MA (1985) Circadian locomotor rhythms in individual honey bees. Physiol Entomol 10:191–197Google Scholar
  45. Morrison AR (1983) A window on the sleeping brain. Sci Am 248:86–94Google Scholar
  46. Motte I de la, Burkhardt D (1983) Portrait of an asian stalkeyed fly. Naturwissenschaften 70:451–461Google Scholar
  47. Obál F Jr (1984) Thermoregulation and sleep. In: Borbély AA, Valatx JL (eds) Sleep mechanisms (Exp Brain Res, Suppl vol 8). Springer, Berlin Heidelberg New York, pp 157–172Google Scholar
  48. Pflumm W (1969) Beziehung zwischen Putzverhalten und Sammelbereitschaft bei der Honigbiene. Z Vergl Physiol 64:1–36Google Scholar
  49. Rathmayer W (1962) Das Paralysierungsproblem beim Bienenwolf,Philanthus triangulum F. (Hym. Sphec.). Z Vergl Physiol 45:413–462Google Scholar
  50. Rothe U (1983) Stoffwechselphysiologische Untersuchungen an ruhenden, laufenden und fliegenden Honigbienen (Apis mellifica carnica). Dissertation, Universität des SaarlandesGoogle Scholar
  51. Schulze H (1924) 3. Über die Fühlerhaltung vonHabrobracon jugl. Ash. (Braconidae); zugleich ein Beitrag zur Sinnesphysiologie und Psychologie dieser Schlupfwespe. Zool Anz 61:122–134Google Scholar
  52. Snodgrass RE (1956) Anatomy of the honey bee. Comstock Publishing Associates, Ithaca LondonGoogle Scholar
  53. Szymczak JT (1987) Daily distribution of sleep states in the rookCorvus frugilegus. J Comp Physiol A 161:321–327Google Scholar
  54. Thoman EB, Glazier RC (1987) Computer scoring of motility patterns for states of sleep and wakefulness: human infants. Sleep 10:122–129Google Scholar
  55. Tobler I (1983) Effect of forced locomotion on the rest-activity cycle of the cockroach. Behav Brain Res 8:351–360Google Scholar
  56. Tobler I (1984) Evolution of the sleep process: A phylogenetic approach. In: Borbély AA, Valatx JL (eds) Sleep mechanisms (Exp Brain Res, Suppl vol 8). Springer, Berlin Heidelberg New York, pp 207–226Google Scholar
  57. Wilde-Frenz J, Schulz H (1983) Rate and distribution of body movements during sleep in humans. Percept Mot Skills 56:275–283Google Scholar
  58. Williams HL, Hammack JT, Daly RL, Dement WC, Lubin A (1964) Responses to auditory stimulation, sleep loss and the EEG stages of sleep. Electroencephalogr Clin Neurophysiol 16:269–279Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Walter Kaiser
    • 1
  1. 1.Institut für Zoologie der Technischen Hochschule DarmstadtDarmstadtGermany

Personalised recommendations