Journal of Comparative Physiology A

, Volume 158, Issue 4, pp 457–467 | Cite as

Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a14C-2DG study

  • T. Finkenstädt
  • N. T. Adler
  • T. O. Allen
  • J. -P. Ewert


The regional glucose utilization in the telencephalon of toadsBufo bufo during stimulation with different visual key stimuli was quantitatively mapped by means of the14C-2DG autoradiographic method: (i) a 4×28 mm2 worm-like stripe (W) eliciting prey catching responses, (ii) a 84×84 mm2 square (S) releasing predator avoidance responses, and (iii) a 28×4 mm2 antiwormlike stripe (A) eliciting no motor response.

Various telencephalic structures changed14C- 2DG uptake statistical significantly during stimulation with the above visual objects in comparison with binocular enucleated animals (brain-to-brain comparison) and in comparison between both hemispheres in monocular animals (interhemispherical comparison): (1) The ventral two-thirds of the posterior half of the medial palliumdecreased14C-2DG uptake during W- and S-experiments, particularly in response to W. (2) In the posterior two-thirds of the lateral pallium,14C- 2DG uptake wasdecreased in response to the worm-, andincreased in response to the square (S) and antiworm stimuli (A). (3) The ventral striatumincreased uptake of14C-2DG during the animal's response to W- and S-stimuli significantly stronger than in the A-experiment. (4) The dorsal striatum also showed a significant change in14C-2DG uptake which, on a lower level, was not correlated with the type of stimulation experiment.

Various prosencephalic structures are involved in circuitries related to attentional phenomena and the gating of prey catching and predator avoidance behavior. The different functions of these structures are discussed.


Glucose Utilization Avoidance Response Dorsal Striatum Predator Avoidance Posterior Half 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



anterior dorsal thalamus


nucleus ac-cumbens


amygdala, pars lateralis


amygdala, pars medialis


anterior third of the lateral pallium


anterior half of the medial pallium


Bed nucleus of the palliai commissure


entopeduncular nucleus, pars anterior


dorsal medial pallium


dorsal pallium


dorsal striatum


lateral thalamic nucleus, anterior division


lateral thalamic nucleus, postero-dorsal division


optic tectum


posterior thalamic nucleus


posterior two-thirds of the lateral pallium


preoptic area of the hypothalamus;


tegmental portion of the medial reticular formation


medial (MS) and lateral (LS) septum


ventral two-thirds of the medial pallium (MP)


ventral striatum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blankenagel F (1931) Untersuchungen über die Großhirnfunktionen von R.temporaria. Zool Jahrb 49:271–322Google Scholar
  2. Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. Exp Brain Res 53:320–326Google Scholar
  3. Diebschlag E (1935) Zur Kenntnis der Großhirnfunktion einiger Urodelen und Anuren. Z Vergl Physiol 21:343–394Google Scholar
  4. Ewert J-P (1967) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L.). Z Vergl Physiol 57:263–298Google Scholar
  5. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Vergl Physiol 61:41–70Google Scholar
  6. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–399Google Scholar
  7. Ewert J-P (1986) Neuroethology: Toward a functional analysis of neural circuitries. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation. NATO-ASI Proceedings (in press)Google Scholar
  8. Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system: A14C-2DG-deoxyglucose study. Naturwissenschaften 72:161Google Scholar
  9. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J Comp Physiol A 156:433–445Google Scholar
  10. Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. Neurosci Biobehav Rev 6:409–422Google Scholar
  11. Groves PM, Thompson RF (1970) Habituation: A dual process theory. Psychol Rev 77:419–450Google Scholar
  12. Gruberg ER, Ambros VR (1974) A forebrain visual projection in the frog (Rana pipiens). Exp Neurol 44:187–197Google Scholar
  13. Grüsser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R., Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 298–385Google Scholar
  14. Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, ChicagoGoogle Scholar
  15. Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Exp Brain Res 39:217–228Google Scholar
  16. Kicliter E, Northcutt RG (1975) Ascending afferents to the telencephalon of ranid frogs: An anterograde degeneration study. J Comp Neurol 161:239–254Google Scholar
  17. Kokoros JJ (1973) Efferent connections of the telencephalon in the toadsBufo marinus, and the tiger salamander,Ambystoma tigrinum. Doctoral thesis, Case Western Reserve UniversityGoogle Scholar
  18. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog's eye tells the frog's brain. Proc Inst Radio Eng NY 47:1940–1951Google Scholar
  19. Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215Google Scholar
  20. Mudry KM, Capranica RR (1980) Evoked auditory activity within the telencephalon of the bullfrog (Rana catesbeiana). Brain Res 182:303–311Google Scholar
  21. Neary TJ, Wilczynski W (1980) Descending inputs to the optic tectum in ranid frogs. Soc Neurosci Abstr 6:629Google Scholar
  22. Northcutt RG (1970) Pallial projection of sciatic, ulnar, and mandibular branch of the trigeminal afferents in the frog (Rana catesbeiana). Anat Rec 166:356Google Scholar
  23. Northcutt RG (1974) Some histological observations on the telencephalon of the bullfrog,Rana catesbeiana. J Comp Neuroll 57:379–390Google Scholar
  24. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255Google Scholar
  25. Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrogRana catesbeiana. J Morphol 145:51–268Google Scholar
  26. Rizzolatti G (1981) Mechanisms of selective attention in mammals. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. NATO-AS1 Series. Plenum Press, New York, pp 261–297Google Scholar
  27. Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs,Rana pipiens. Herpetologia 34:167–172Google Scholar
  28. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916Google Scholar
  29. Supin AY, Guse L'Nikov VI (1964) Representation of visual, auditory and somatosensory systems in frog forebrain. Fiziol Zh (Mosk) 50:426–434Google Scholar
  30. Theurich M, Müller ChM, Scheich H (1984) 2-Deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian auditory neostriatum. Brain Res 322:157–161Google Scholar
  31. Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: Afferent organization. J Comp Neurol 214:321–332Google Scholar
  32. Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: Efferent projections. J Comp Neurol 214:333–342Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • T. Finkenstädt
    • 1
  • N. T. Adler
    • 2
  • T. O. Allen
    • 2
  • J. -P. Ewert
    • 1
  1. 1.Abteilung für Neuroethologie, GH KasselUniversität des Landes HessenKasselFederal Republic of Germany
  2. 2.Psychology DepartmentUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations