Journal of Comparative Physiology A

, Volume 161, Issue 4, pp 533–547

Evaluation of optical motion information by movement detectors

  • Werner Reichardt


The paper is dealing in its first part with a system-theoretical approach for the decomposition of multi-input systems into the sum of simpler systems. By this approach the algorithm for the computations underlying the extraction of motion information from the optical environment by biological movement detectors is analysed. In the second part it concentrates on a specific model for motion computation known to be realized by the visual system of insects and of man. These motion detectors provide the visual system with information on both, velocity and structural properties of a moving pattern. The last part of the paper deals with the functional properties of two-dimensional arrays of movement detectors. They are analyzed and their relations to meaningful physiological responses are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelson EH, Berg JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299Google Scholar
  2. Anderson SJ, Burr DC (1985) Spatial and temporal selectivity of the human motion detection system. Vision Res 8:1147–1154Google Scholar
  3. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit's retina. J Physiol (Lond) 178:477–504Google Scholar
  4. Buchner E (1974) Bewegungsperzeption in einem visuellen System mit gerastertem Eingang. Dissertation, Eberhard-Karls Universität TübingenGoogle Scholar
  5. Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 561–621Google Scholar
  6. Burr DC, Ross J (1982) Contrast sensitivity at high velocities. Vision Res 22:479–484Google Scholar
  7. Diener HC, Wist ER, Dichgans J, Brandt Th (1976) The spatial frequency effect on perceived velocity. Vision Res 16:169–176Google Scholar
  8. van Doorn AJ, Koenderink JJ (1976) A directionally sensitive network. Biol Cybern 21:161–170Google Scholar
  9. van Doorn AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:179–188Google Scholar
  10. van Doorn AJ, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving spatial white noise. Exp Brain Res 45:189–195Google Scholar
  11. Eckert H (1973) Optomotorische Untersuchungen am visuellen System der StubenfliegeMusca domestica L. Kybernetik 14:1–23Google Scholar
  12. Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on neuronal network and the role of the optomotor system. Biol Cybern 52:123–140Google Scholar
  13. Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurons. Biol Cybern 52:195–209Google Scholar
  14. Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280Google Scholar
  15. Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 55:1–19Google Scholar
  16. Fermi G, Reichardt W (1963) Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik 2:15–28Google Scholar
  17. Foster DH (1971) A model of the human visual system in its response to certain classes of moving stimuli. Kybernetik 8:69–84Google Scholar
  18. Geiger G, Poggio T (1975) The orientation of flies towards visual patterns: on the search for the underlying functional interactions. Biol Cybern 17:1–16Google Scholar
  19. Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92Google Scholar
  20. Götz KG (1972) Principles of optomotor reactions in insects. Bibliotheca Ophthal 82:251–259Google Scholar
  21. Götz KG (1975) The optomotor equilibrium of theDrosophila navigation system. J Comp Physiol 99:187–210Google Scholar
  22. Grüsser OJ, Grüsser-Cornehls U (1973) Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Jung R (ed) Handbook of sensory physiology, vol VII/3 A. Springer, Berlin Heidelberg New York, pp 333–429Google Scholar
  23. Hassenstein B (1958) Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern. Z Vergl Physiol 40:556–592Google Scholar
  24. Hassenstein B (1959) Optokinetische Wirksamkeit bewegter periodischer Muster. Z Naturforsch 14b:659–674Google Scholar
  25. Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z Naturforsch 11b:513–524Google Scholar
  26. Hertz M (1929a) Die Organisation des optischen Feldes bei der Biene I. Z Vergl Physiol 8:693–748Google Scholar
  27. Hertz M (1929b) Die Organisation des optischen Feldes bei der Biene II. Z Vergl Physiol 11:107–145Google Scholar
  28. Kelly DH (1979) Motion and vision. II. Stabilized spatio-temporal threshold surface. J Opt Soc Am 69:1340–1349Google Scholar
  29. Kirschfeld K (1972) The visual system ofMusca: studies on optics, structure and function. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 61–74Google Scholar
  30. Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44:656–684Google Scholar
  31. McCann GC, MacGinitie GF (1965) Optomotor response studies of insect vision. Proc R Soc London B 163:369–401Google Scholar
  32. Palm G, Poggio T (1977) Wiener-like system identification in physiology. Math Biology 4:375–381Google Scholar
  33. Pantle A (1974) Motion aftereffect magnitude as a measure of the spatio-temporal response properties of direction-sensitive analyzer. Vision Res 14:1229–1236Google Scholar
  34. Pick B (1974) Visual flicker induced orientation behavior in the fly. Z Naturforsch 29c:310–312Google Scholar
  35. Poggio T, Reichardt W (1973a) Considerations on models of movement detection. Kybernetik 13:223–227Google Scholar
  36. Poggio T, Reichardt W (1973b) A theory of the pattern induced flight orientation of the flyMusca domestica. Kybernetik 12:185–203Google Scholar
  37. Poggio T, Reichardt W (1976a) Nonlinear interactions underlying visual orientation behaviour of the fly. In: Cold Spring Harb Symp Quant Biol 40:635–645Google Scholar
  38. Poggio T, Reichardt W (1976b) Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Quart Rev Biophys 9:377–438Google Scholar
  39. Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b:448–457Google Scholar
  40. Reichardt W (1961) Autocorrelation a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communications. Wiley, New York, pp 303–317Google Scholar
  41. Reichardt W (1969) Movement perception in insects. In: Reichardt W (ed) Processing of optical data by organisms and machines. Academic Press, London New York, pp 465–493Google Scholar
  42. Reichardt W (1985) Computation of sensory information by the visual system of the fly (from behaviour to neuronal circuitry). In: Haken H (ed) Complex systems — Operational approaches in neurobiology, physics, and computers. Springer, Berlin Heidelberg New York Tokyo, pp 38–57Google Scholar
  43. Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the flyMusca domestica). Biol Cybern 53:285–306Google Scholar
  44. Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I. Experimental results. Biol Cybern 35:81Google Scholar
  45. Reichardt W, Poggio T (1981) Characterization of nonlinear interactions in the fly's visual system. pp 64–84. Appendix 4: A polynomial representation of algorithms. pp 197–202. In: Reichardt W, Poggio T (eds) Theoretical approaches in neurobiology. MIT Press, Cambridge MA LondonGoogle Scholar
  46. Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Z Naturforsch 14b:674–689Google Scholar
  47. Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern [Suppl] 46:1–30Google Scholar
  48. Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394Google Scholar
  49. van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1:451–473Google Scholar
  50. van Santen JPH, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2:300–321Google Scholar
  51. Thorson J (1964) Dynamics of motion perception in the desert locust. Science (NY) 145:69–71Google Scholar
  52. Thorson J (1966a, b) Small signal analysis of a visual reflex in the locust: I, II. Kybernetik 3:41–66Google Scholar
  53. Tolhurst DJ (1973) Separate channels for the analysis of the shape and the movement of a moving visual stimulus. J Physiol 231:385–402Google Scholar
  54. Varjú D, Reichardt W (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Z Naturforsch 22b:1343–1351Google Scholar
  55. Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51:213–222Google Scholar
  56. Wright MJ, Johnston A (1985) Invariant tuning of motion aftereffect. Vision Res 25:1947–1955Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Werner Reichardt
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations